Search Results

You are looking at 1 - 10 of 50 items for :

  • "lymphocytes" x
Clear All
Restricted access

Shu-Hui Yeh, Hsiu-Ling Lai, Chiu-Yueh Hsiao, Li-Wei Lin, Yu-Kuan Chuang, Yu-Ying Yang and Kuender D. Yang

Background:

Moderate physical activity has been shown to promote immunity. Different moderate physical activities may have different effects on immunity. This study investigated the impacts of a 12-week regular music aerobic exercise (MAE) program on leukocyte distribution, lymphocyte subsets, and lymphocyte polarization.

Methods:

The study used a case-control design with pretest and posttest. Forty-seven middle-age women were recruited for this study. Three participants dropped out, 22 completed the 12-week MAE program, and the other 22 participants who had heat-intolerance or limited schedule eligibility were enrolled as the control group without the MAE exercise.

Results:

Results showed that the MAE exercise for 12 weeks didn’t change red blood cells or total leukocytes but increased lymphocyte counts. The women in MAE group revealed significant increases (P ≤ 0.01) of CD3CD4, CD3CD8, and CD4CD25 cells, associated with Treg polarization showing enhanced FoxP3 but not T-bet, Gata-3, or RORγT expression (P < .01). The control group without exercise revealed insignificant change of lymphocyte subsets or lymphocyte polarization.

Conclusions:

This study shows that MAE increases specific lymphocyte subsets and enhances Treg cell differentiation. It is suggested to encourage moderate physical activity of music aerobic exercise to enhance lymphocyte function of middle-aged women.

Restricted access

Vinicius Coneglian Santos, Adriana Cristina Levada-Pires, Sâmia Rocha Alves, Tânia Cristina Pithon-Curi, Rui Curi and Maria Fernanda Cury-Boaventura

Purpose:

To investigate the effects of docosahexaenoic-(DHA)-rich fish oil (FO) supplementation on lymphocyte function before and after a marathon race.

Methods:

Twenty-one athletes participated in this study. Eight marathon runners were supplemented with 3 g of FO daily for 60 d (FO group), and 13 athletes were not supplemented (C group). The following measures of lymphocytes were taken before and after the marathon: cell proliferation, cytokine production (IL-2, IL-10, TNF-α, and IL-4), and signs of cell death.

Results:

In the C group, the marathon had no effect on lymphocyte proliferation, DNA fragmentation, or mitochondrial membrane polarization; however, the marathon increased phosphatidylserine externalization (by 2.5-fold), induced a loss of plasma membrane integrity (by 20%), and decreased IL-2, TNF-α, and IL-10 production (by 55%, 95%, and 50%, respectively). FO supplementation did not prevent lymphocyte death induced by the marathon, as indicated by cell viability, DNA fragmentation, and phosphatidylserine externalization. However, FO supplementation increased lymphocyte proliferation before and after the marathon, and before the race, FO supplementation decreased IL-2, TNF-α, and IL-10 production in concanavalin-A-stimulated lymphocytes (by 55%, 95%, and 58%, respectively) compared with cells from the C group. The production of cytokines was not altered before or after the race in the FO group.

Conclusions:

DHA-rich FO supplementation increased lymphocyte proliferation and prevented a decrease in cytokine production, but it did not prevent lymphocyte death induced by participation in the marathon. Overall, DHA rich-FO supplementation has beneficial effects in preventing some of the changes in lymphocyte function induced by marathon participation.

Restricted access

Dru A. Henson, David C. Nieman, E. Edward Pistilli, Brian Schilling, AnnaRita Colacino, Allan C. Utter, Omar R. Fagoaga, Debra M. Vinci and Sandra L. Nehlsen-Cannarella

The influence of 6% carbohydrate ingestion and age on PHA-induced lymphocyte proliferation and in vitro cytokine production was studied in 48 runners following a competitive marathon. Runners were randomly assigned to carbohydrate (C; n = 23) and placebo (P; n = 25) groups, with blood samples taken before, immediately after, and 1.5 hr post-race. C versus P ingestion resulted in higher plasma glucose, lower plasma corlisol, reduced neutrophilia, and mono-cytosis during recovery, but had no effect on the post-exercise reduction in T-lymphocytes or NK cells, or on race times. No group differences were observed for PHA-induced lymphocyte proliferation or cytokine production. However, for all subjects combined, lymphocyte proliferation and IFN-γ secretion decreased significantly below pre-race values by 1.5 hr of recovery, and these were negatively correlated with plasma cortisol. Young (<50 years; n = 36) and old (≥50 years; n = 12) runners exhibited parallel post-race declines in lymphocyte proliferation and IFN-γ secretion, with the older group exhibiting a 33–59% lower proliferation at each time point. In conclusion, PHA-induced lymphocyte proliferation and cytokine production decreased significantly following a marathon, and this decrease was strongly linked to cortisol and only partially linked to T-cell changes. This decrease occurred in both younger and older runners and was not influenced by carbohydrate.

Restricted access

Edward E. Pistilli, David C. Nieman, Dru A. Henson, David E. Kaminsky, Alan C. Utter, Debra M. Vinci, J. Mark Davis, Omar R. Fagoaga and Sandra L. Nehlsen-Cannarella

Immune changes in 75 younger (age 37.4 ± 0.9 years) and 23 older (57.0 ± 1.4 years) runners were compared after a competitive marathon, with blood samples collected pre- and immediately and 1.5 hr postrace. Race times were slower for the older group (4.7 ± 0.2 vs. 4.3 ± 0.1 hr, p = .015), but both groups performed at similar intensity (83.4 ± 0.9 vs. 82.9 ± 0.5% HRmax). The pattern of change in plasma cortisol, epinephrine, growth hormone, and blood leukocyte subsets did not differ significantly between the groups postrace. Blood lymphocyte counts were 20–24% lower in the older runners at each time point because of reduced T-cell counts. Postrace, plasma levels of IL-1ra, -10, -6, and -8 rose strongly in all runners, and salivary IgA secretion rate decreased, but no group differences in the pattern of change were noted. In conclusion, younger and older runners experienced similar hormonal and immune changes after running a marathon.

Restricted access

Stewart J. Laing, Samuel J. Oliver, Sally Wilson, Robert Walters, James L.J Bilzon and Neil P. Walsh

The aim was to investigate the effects of 48 hr of fluid, energy, or combined fluid and energy restriction on circulating leukocyte and lymphocyte subset counts (CD3+, CD4+, and CD8+) and bacterially stimulated neutrophil degranulation at rest and after exercise. Thirteen healthy men (M ± SEM age 21 ± 1 yr) participated in 4 randomized 48-hr trials. During control (CON) participants received their estimated energy (2,903 ± 17 kcal/day) and fluid (3,912 ± 140 ml/day) requirements. During fluid restriction (FR) they received their energy requirements and 193 ± 19 ml/day water to drink. During energy restriction (ER) they received their fluid requirements and 290 ± 6 kcal/day. Fluid and energy restriction (F+ER) was a combination of FR and ER. After 48 hr, participants performed a 30-min treadmill time trial (TT) followed by rehydration (0–2 hr) and refeeding (2–6 hr). Circulating leukocyte and lymphocyte counts remained unchanged for CON and FR. Circulating leukocyte, lymphocyte, CD3+, and CD4+ counts decreased by ~20% in ER and ~30% in F+ER by 48 hr (p < .01), returning to within 0-hr values by 6 hr post-TT. Circulating neutrophil count and degranulation were unaltered by dietary restriction at rest and after TT. In conclusion, a 48-hr period of ER and F+ER, but not FR, decreased circulating leukocyte, lymphocyte, CD3+, and CD4+ counts but not neutrophil count or degranulation. Circulating leukocyte and lymphocyte counts normalized on refeeding. Finally, dietary restriction did not alter circulating leukocyte, lymphocyte, and neutrophil responses to 30 min of maximal exercise.

Restricted access

Miguel David Ferrer, Pedro Tauler, Antoni Sureda, Pedro Pujol, Franchec Drobnic, Josep Antoni Tur and Antoni Pons

Soccer-associated oxidative stress has barely been studied. The aims of this study were to establish the effect of a soccer training match and the effect of a diet supplementation with a multivitamin complex and coenzyme Q during 3 months of soccer training on the pro-oxidant and antioxidant status of lymphocytes. In a randomized, double-blind trial, 19 male preprofessional soccer players were treated with either an antioxidant nutrient cocktail or placebo for 90 days. After this period the athletes played a soccer match lasting 60 min. All determinations were made under basal conditions before and after the training period and after the match. Basal lymphocyte hydrogen peroxide (H2O2) production did not change after the 3 months of training. Catalase activity decreased (about 50%) after the 3 months, whereas glutathione reductase increased its activity (150–200%) both with placebo and in the supplemented group. Basal ascorbate levels were maintained during the training period, whereas α-tocopherol and MDA decreased (about 40%) in both groups. The match increased H2O2 production (180%) in both groups when the lymphocytes were stimulated with phorbol myristate acetate, and it also increased MDA levels (150%). Antioxidant enzyme activities and antioxidant vitamin levels were maintained before and after the match. Regular soccer training modifies the lymphocyte strategy to eliminate ROS and increases protection against oxidative damage. A friendly soccer match raises lymphocyte capacity to produce ROS and oxidative damage, but it is not enough to induce a defensive response, thus leading to a situation of postexercise oxidative stress. Supplementation with low doses of antioxidant vitamins and coenzyme Q does not modify the endogenous antioxidant response to training.

Restricted access

Alexandra A. Avloniti, Helen T. Douda, Savvas P. Tokmakidis, Alexandros H. Kortsaris, Evropi G. Papadopoulou and Emmanouil G. Spanoudakis

Purpose:

To investigate the acute changes in leukocyte number and cortisol after a single bout of soccer training.

Methods:

Ten elite female national-team soccer players and 8 nonathletes participated in the study. The duration of the exercise was 2 h, and it was performed at an intensity of 75% of maximal heart rate (HRmax). Blood samples were taken before, immediately after, and 4 h after a soccer training session to determine total white blood cells; the subsets of neutrophils, lymphocytes, monocytes, eosinophils, and basophils; and cortisol. At the same time, blood samples were obtained from nonathletes who refrained from exercise.

Results:

Data analysis indicated a significant increase in total white blood cells in the athletes postexercise (P < .001). The leukocytosis was still evident after 4 h of recovery (78% higher than the preexercise values), and there was a significant difference between athletes and nonathletes (P < .001). This leukocytosis was primarily caused by neutrophilia—there were no significant differences in lymphocytes after the end of exercise or between the 2 groups (P > 0.05). In addition, there was a statistically significant difference in cortisol concentration between athletes and nonathletes after the exercise (P < .001).

Conclusion:

These findings revealed that the single bout of soccer training at an intensity of 75% of HRmax induced leukocytosis without affecting the lymphocyte count in elite female athletes and probably the effectiveness of cellular components of adaptive immunity. Coaches should provide adequate time (>4 h) until the next exercise session.

Restricted access

Deborah K. Fletcher and Nicolette C. Bishop

This study investigated the effect of a high and low dose of caffeine on antigen-stimulated natural killer (NK) cell (CD3CD56+) activation after prolonged, strenuous cycling, as assessed by the early-activation molecule CD69. In a randomized crossover design, 12 healthy male endurance-trained cyclists cycled for 90 min at 70% VO2peak 60 min after ingesting either 0 (PLA), 2 (2CAF), or 6 (6CAF) mg/kg body mass of caffeine. Whole blood was stimulated with Pediacel (5 in 1) vaccine. A high dose of caffeine (6CAF) increased the number of CD3CD56+ cells in the circulation immediately postexercise compared with PLA (p < .05). For both 2CAF and 6CAF, the geometric mean fluorescence intensity (GMFI) of CD69+ expression on unstimulated CD3CD56+ cells was significantly higher than with PLA (both p < .05). When cells were stimulated with antigen, the GMFI of CD69 expression remained significantly higher with 2CAF than with PLA 1 hr postexercise (p < .05). Although not achieving statistical significance, 6CAF also followed a similar trend when stimulated (p = .09). There were no differences in GMFI of CD69 expression between 2CAF and 6CAF. These results suggest that a high (6 mg/kg) dose of caffeine was associated with the recruitment of NK cells into the circulation and that both a high and low (2 mg/kg) dose of caffeine increased unstimulated and antigen-stimulated NK-cell activation 1 hr after high-intensity exercise. Furthermore, there does not appear to be a dose-dependent effect of caffeine on NK-cell activation 1 hr after prolonged intensive cycling.

Restricted access

Michael Gleeson, Andrew K. Blannin, Neil P. Walsh, Nicolette C. Bishop and Anya M. Clark

We examined the effects of a low-carbohydrate (CHO) diet on the plasma glutamine and circulating leukocyte responses to prolonged strenuous exercise. Twelve untrained male subjects cycled for 60 min at 70% of maximal oxygen uptake on two separate occasions, 3 days apart. All subjects performed the first exercise task after a normal diet: they completed the second exercise task after 3 days on either a high-CHO diet (75±8% CHO, n = 6) or a low-CHO diet (7±4% CHO, n = 6). The low-CHO diet was associated with a larger rise in plasma cortisol during exercise, a greater fall in the plasma glutamine concentration during recovery, and a larger neutrophilia during the postexercise period. Exercise on the high-CHO diet did not affect levels of plasma glutamine and circulating leukocytes. We conclude that CHO availability can influence the plasma glutamine andcirculaling leukocyte responses during recovery from intense prolonged exercise.

Restricted access

David C. Nieman, Giuseppe Valacchi, Laurel M. Wentz, Francesca Ferrara, Alessandra Pecorelli, Brittany Woodby, Camila A. Sakaguchi and Andrew Simonson

Hematology Analyzer (Beckman Coulter, Inc., Miami, FL). Exercise-induced shifts in plasma volume were also calculated, using hemoglobin and hematocrit values. The ratio of blood neutrophil/lymphocyte cell counts was used as an index of inflammation. Statistical Analysis Biomarker data were analyzed using the