Search Results

You are looking at 1 - 10 of 168 items for :

  • "maximal sprint" x
  • Refine by Access: All Content x
Clear All
Restricted access

Martin Buchheit, Ben M. Simpson, Esa Peltola, and Alberto Mendez-Villanueva

The aim of the present study was to locate the fastest 10-m split time (Splitbest) over a 40-m sprint in relation to age and maximal sprint speed in highly trained young soccer players. Analyses were performed on 967 independent player sprints collected in 223 highly trained young football players (Under 12 to Under 18). The maximal sprint speed was defined as the average running speed during Splitbest. The distribution of the distance associated with Splitbest was affected by age (X 2 3 = 158.7, P < .001), with the older the players, the greater the proportion of 30-to-40-m Splitbest. There was, however, no between-group difference when data were adjusted for maximal sprint speed. Maximal sprint speed is the main determinant of the distance associated with Splitbest. Given the important disparity in Splitbest location within each age group, three (U12-U13) to two (U14-U18) 10-m intervals are still required to guarantee an accurate evaluation of maximal sprint speed in young players when using timing gates.

Restricted access

Madison Taylor, Nicki Almquist, Bent Rønnestad, Arnt Erik Tjønna, Morten Kristoffersen, Matt Spencer, Øyvind Sandbakk, and Knut Skovereng

perform low-volume LIT, whereas SPR included 3 supervised sessions (once per week) wherein sprints were included in LIT sessions. The 90-minute session included a 20-minute warm-up at 60% of VO 2 max followed by 3 sets of 3 × 30 seconds maximal sprints with 4 minutes between each sprint ( 1-min passive

Restricted access

Robert W. Meyers, Jonathan L. Oliver, Michael G. Hughes, John B. Cronin, and Rhodri S. Lloyd

The purpose of this study was to examine the natural development of the mechanical features of sprint performance in relation to maturation within a large cohort of boys. Three hundred and thirty-six boys (11-15 years) were analyzed for sprint performance and maturation. Maximal speed, stride length (SL), stride frequency (SF), flight time (FT) and contact time (CT) were assessed during a 30m sprint. Five maturation groups (G1-5) were established based on age from peak height velocity (PHV) where G1=>2.5years pre-PHV, G2 = 2.49-1.5years pre-PHV, G3 = 1.49-0.5years pre-PHV, G4 = 0.49years pre- to 0.5years post-PHV and G5 = 0.51-1.5years post-PHV. There was no difference in maximal speed between G1, G2 and G3 but those in G4 and G5 were significantly faster (p < .05) than G1-3. Significant increases (p < .05) in SL were observed between groups with advancing maturation, except G4 and G5 (p > .05). SF decreased while CT increased (both p < .05) between G1, G2 and G3, but no further significant changes (p > .05) were observed for either variable between G3, G4 and G5. While G1-3 increased their SL, concomitant decreases in SF and increases in CT prevented them from improving maximal speed. Maximal sprint speed appears to develop around and post-PHV as SF and CT begin to stabilize, with increases in maximal sprint speed in maturing boys being underpinned by increasing SL.

Restricted access

Robert W. Meyers, Jon L. Oliver, Michael G. Hughes, Rhodri S. Lloyd, and John B. Cronin

Purpose:

The aim of this study was to examine the influence of age and maturation upon magnitude of asymmetry in the force, stiffness and the spatiotemporal determinants of maximal sprint speed in a large cohort of boys.

Methods:

344 boys between the ages of 11 and 16 years completed an anthropometric assessment and a 35 m sprint test, during which sprint performance was recorded via a ground-level optical measurement system. Maximal sprint velocity, as well as asymmetry in spatiotemporal variables, modeled force and stiffness data were established for each participant. For analysis, participants were grouped into chronological age, maturation and percentile groups.

Results:

The range of mean asymmetry across age groups and variables was 2.3–12.6%. The magnitude of asymmetry in all the sprint variables was not significantly different across age and maturation groups (p > .05), except relative leg stiffness (p < .05). No strong relationships between asymmetry in sprint variables and maximal sprint velocity were evident (rs < .39).

Conclusion:

These results provide a novel benchmark for the expected magnitude of asymmetry in a large cohort of uninjured boys during maximal sprint performance. Asymmetry in sprint performance is largely unaffected by age or maturation and no strong relationships exist between the magnitude of asymmetry and maximal sprint velocity.

Restricted access

Kyle M.A. Thompson, Alanna K. Whinton, Shane Ferth, Lawrence L. Spriet, and Jamie F. Burr

extensions in highly trained males 5 and improved 6-seconds sprint cycling peak power output, 16 Gibson et al 15 did not observe an improvement in 10-, 20-, or 30-m maximal sprint time using a group of team-sport athletes. Irrespective of the sprint-specific literature, there are a number of more general

Restricted access

Robert W. Meyers, Jon L. Oliver, Michael G. Hughes, Rhodri S. Lloyd, and John Cronin

The purpose of this study was to examine the reliability of the spatiotemporal determinants of maximal sprinting speed in boys over single and multiple steps. Fifty-four adolescent boys (age = 14.1 ± 0.7 years [range = 12.9–15.7 years]; height = 1.63 ± 0.09 m; body mass = 55.3 ± 13.3 kg; -0.31 ± 0.90 age from Peak Height Velocity (PHV) in years; mean ± s) volunteered to complete a 30 m sprint test on 3 occasions over a 2-week period. Speed, step length, step frequency, contact time, and flight time were assessed via an optical measurement system. Speed and step characteristics were obtained from the single-fastest step and average of the 2 and 4 fastest consecutive steps. Pairwise comparison of consecutive trials revealed the coefficient of variation (CV) for speed was greater in 4-step (CV = 7.3 & 7.5%) compared with 2-step (CV = 4.2 & 4.1%) and 1-step (CV = 4.8 & 4.6%) analysis. The CV of step length, step frequency and contact time ranged from 4.8 to 7.5% for 1-step, 3.8–5.0% for 2-step and 4.2–7.5% for 4-step analyses across all trials. An acceptable degree of reliability was achieved for the spatiotemporal and performance variables assessed in this study. Two-step analysis demonstrated the highest degree of reliability for the key spatiotemporal variables, and therefore may be the most suitable approach to monitor the spatiotemporal characteristics of maximal sprint speed in boys.

Restricted access

Hani Al Haddad, Ben M. Simpson, Martin Buchheit, Valter Di Salvo, and Alberto Mendez-Villanueva

This study assessed the relationship between peak match speed (PMS) and maximal sprinting speed (MSS) in regard to age and playing positions. MSS and absolute PMS (PMSAbs) were collected from 180 male youth soccer players (U13–U17, 15.0 ± 1.2 y, 161.5 ± 9.2 cm, and 48.3 ± 8.7 kg). The fastest 10-m split over a 40-m sprint was used to determine MSS. PMSAbs was recorded using a global positioning system and was also expressed as a percentage of MSS (PMSRel). Sprint data were compared between age groups and between playing positions. Results showed that regardless of age and playing positions, faster players were likely to reach higher PMSAbs and possibly lower PMSRel. Despite a lower PMSAbs than in older groups (eg, 23.4 ± 1.8 vs 26.8 ± 1.9 km/h for U13 and U17, respectively, ES = 1.9 90%, confidence limits [1.6;2.1]), younger players reached a greater PMSRel (92.0% ± 6.3% vs. 87.2% ± 5.7% for U13 and U17, respectively, ES = –0.8 90% CL [–1.0;–0.5]). Playing position also affected PMSAbs and PMSRel, as strikers were likely to reach higher PMSAbs (eg, 27.0 ± 2.7 vs 23.6 ± 2.2 km/h for strikers and central midfielders, respectively, ES = 2.0 [1.7;2.2]) and PMSRel (eg, 93.6% ± 5.2% vs 85.3% ± 6.5% for strikers and central midfielders, respectively, ES = 1.0 [0.7;1.3]) than all other positions. The findings confirm that age and playing position affect the absolute and relative intensity of speed-related actions during matches.

Restricted access

Tobias Alt, Igor Komnik, Jannik Severin, Yannick T. Nodler, Rita Benker, Axel J. Knicker, Gert-Peter Brüggemann, and Heiko K. Strüder

injuries. 2 , 11 , 14 , 15 It has been suggested that the synergy of hip and knee joint mechanics in the late swing phase is crucial for optimizing sprint performance. 2 , 4 , 7 , 9 However, the biomechanical interplay between hip and knee joint mechanics under maximal sprint velocity is still not

Restricted access

Nicki Winfield Almquist, Gertjan Ettema, James Hopker, Øyvind Sandbakk, and Bent R. Rønnestad

, suggested that decreased GE affects high-intensity performance later in a race, 22 although the effect of repeated maximal sprinting during prolonged exercise on GE and the following recovery hereof has not earlier been investigated. Therefore, the effects of prolonged submaximal cycling with or without

Restricted access

Gareth N. Sandford, Simon A. Rogers, Avish P. Sharma, Andrew E. Kilding, Angus Ross, and Paul B. Laursen

performance and anaerobic speed reserve (ASR), 3 whereby athletes with larger ASR displayed faster 800-m season’s best performances (as a function of their faster maximal sprint speed [MSS]). Specifically, the ASR describes the speed range from velocity at maximal oxgyen uptake (vVO 2 max, also known as