Search Results

You are looking at 1 - 10 of 49 items for :

  • "muscle spindle" x
Clear All
Restricted access

Kazem Malmir, Gholam Reza Olyaei, Saeed Talebian and Ali Ashraf Jamshidi

Context:

Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance.

Objective:

To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop.

Design:

Quasi-experimental, repeated measures.

Setting:

University laboratory.

Participants:

22 recreationally active, healthy men with no history of ankle sprain or giving way.

Interventions:

Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value.

Main Outcome Measures:

Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing.

Results:

A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125).

Conclusions:

Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.

Restricted access

Thomas J. Burkholder and T. Richard Nichols

Postural regulation is an important part of a variety of motor tasks, including quiet standing and locomotion. Muscle length feedback, both the autogenic length feedback arising from a muscle's own spindles, and heterogenic length feedback, arising from its agonists and antagonists, is a strong modulator of muscle force and well suited to postural maintenance. The effects of this reflex feedback on 3-D force generation and limb mechanics are not known. In this paper, we present a mechanical model for relating 3-D changes in cat hindlimb posture to changes in muscle lengths. These changes in muscle length are used to estimate changes in both intrinsic muscle force generation and muscle activation by length feedback pathways. Few muscles are found to have directly agonist mechanical actions, and most differ by more than 20°. Endpoint force fields are largely uniform across the space investigated. Both autogenic and heterogenic feedback contribute to whole limb resistance to perturbation, autogenic pathways being most dramatic. Length feedback strongly reinforced a restoring force in response to end-point displacement.

Restricted access

Troy Blackburn, Kevin M. Guskiewicz, Meredith A. Petschauer and William E. Prentice

Objectives:

To determine whether proprioception or muscular strength is the dominant factor in balance and joint stability and define what type of ankle rehabilitation is most effective for these purposes.

Setting:

The University of North Carolina Sports Medicine Research Laboratory.

Subjects:

Thirty-two healthy volunteers free of head injury, dominant leg injury, and vestibular deficits.

Design:

Subjects were divided into control, strength-training, proprioceptive-training, and strength-proprioception combination training groups. Balance was assessed before and after 6-week training programs.

Measurements:

Static, semidynamic, and dynamic balance were assessed.

Results:

Subjects showed no improvement for static balance but improved significantly for semidynamic (P = .038) and dynamic (P = .002) balance. No significant differences were observed between groups.

Conclusions:

Enhancement of proprioception and muscular strength are equally effective in promoting joint stability and balance maintenance. In addition, no 1 type of training program is superior to another for these purposes.

Restricted access

Gary B. Wilkerson and Arthur J. Nitz

Ankle proprioception is widely regarded as an important factor that affects susceptibility to ankle sprain, but the precise mechanisms by which proprioceptive abilities may enhance ankle stability are not well understood. Pertinent literature is reviewed and theoretical interrelationships among factors that may affect dynamic ankle function are discussed. Topics addressed include mechanoreceptor function, muscle spindle function, postural balance, ankle edema, joint capsule distension, synovial hypertrophy, capsuloligamentous laxity, anterolateral rotary instability, ankle giving way, reflexive muscle splinting, articular deafferentation, neurogenic inflammation, muscular de-efferentation, and enhancement of compensatory neuromuscular mechanisms. Recommendations for future research are presented in the form of questions that cannot be adequately answered at present concerning the role of proprioceptively mediated mechanisms in the maintenance of dynamic ankle stability.

Restricted access

Allyson M. Carter, Stephen J. Kinzey, Linda F. Chitwood and Judith L Cole

Context:

Proprioceptive neuromuscular facilitation (PNF) is commonly used before competition to increase range of motion. It is not known how it changes muscle response to rapid length changes.

Objective:

To determine whether PNF alters hamstring muscle activity during response to rapid elongation.

Design:

2 X 2 factorial.

Setting:

Laboratory.

Participants:

Twenty-four women; means: 167.27 cm, 58.92 kg, 21.42 y, 18.41% body fat, 21.06 kg/m2 BMI.

intervention:

Measurements before and after either rest or PNF were compared.

Main Outcome Measures:

Average muscle activity immediately after a rapid and unexpected stretch, 3 times pretreatment and posttreatment, averaged into 2 pre-and post- measures.

Results:

PNF caused decreased activity in the biceps femoris during response to a sudden stretch (P = .04). No differences were found in semitendinosus activity (P = .35).

Conclusions:

Decreased muscle activity likely results from acute desensitization of the muscle spindle, which might increase risk of muscle and tendon injury.

Restricted access

C. Buz Swanik, Scott M. Lephart, Frank P. Giannantonio and Freddie H. Fu

Anterior cruciate ligament (ACL) injury disrupts static and dynamic knee restraints, compromising functional stability. Deafferentation of ACL mechan-oreceptors alters the spinal reflex pathways to motor nerves and muscle spindles in addition to the cortical pathways for conscious and unconscious appreciation of proprioception and kinesthesia. These pathways are required by the feed-forward and feedback neuromuscular control systems to dynamically stabilize joints. Feed-forward motor control is responsible for preparatory muscle activity, while feedback motor control regulates reactive muscle activity. The level of muscle activation, preparatory or reactive, influences muscular stiffness, thereby providing dynamic restraint for the ACL-deficient athlete. Rehabilitation protocols should incorporate activities that enhance muscle stiffness while encouraging adaptations to peripheral afferents, spinal reflexes, and cortical motor patterns. Four elements crucial for reestablishing neuromuscular control and functional stability are proprioceptive and kinesthetic awareness, dynamic stability, preparatory and reactive muscle characteristics, and conscious and unconscious functional motor patterns.

Restricted access

Joseph S. Soltys and Sara E. Wilson

Regulating spinal motion requires proprioceptive feedback. While studies have investigated the sensing of static lumbar postures, few have investigated sensing lumbar movement speed. In this study, proprioceptive contributions to lateral trunk motion were examined during paraspinal muscle vibration. Seventeen healthy subjects performed lateral trunk flexion movements while lying prone with pelvis fixed. A 44.5-Hz vibratory stimulus was applied to the paraspinal muscles at the L3 level. Subjects attempted to match target paces of 9.5, 13.5, and 17.5 deg/s with and without paraspinal muscle vibration. Vibration of the paraspinal musculature was found to result in slower overall lateral flexion. This effect was found to have a greater influence in the difference of directional velocities with vibration applied to the left musculature. These changes reflect the sensitivity of lumbar velocity sense to applied vibration leading to the perception of faster muscle lengthening and ultimately resulting in slower movement velocities. This suggests that muscle spindle organs modulate the ability to sense velocity of motion and are important in the control of dynamic motion of the spine.

Restricted access

Richard G. Mynark and David M. Koceja

The spinal stretch reflex consists of a relatively simple neuronal network. The Ia afferent fiber of the muscle spindle communicates to the alpha motoneuron via a single synapse. This basic pathway has been studied extensively over the past century, yet considerable information continues to emerge concerning the manner in which this pathway adapts to aging. It is well accepted that the amplitude of the spinal stretch reflex declines with normal aging, and it is intuitively agreed that these changes have a detrimental impact on the motor output of aging individuals. Understanding the changes observed in the spinal stretch reflex pathway due to aging requires a recognition of the changes that can occur in each component of this spinal network. This review will address these changes by following the spinal stretch reflex from initiation to completion. The components that result in the sensory input to the motoneuron will be covered first, followed by a review of the physiological changes that can occur to the motoneuron soma that can affect the processing of the sensory input. The output of the motoneuron encompasses the remaining components from the motor axon itself, to the neuromuscular junction, and then to the characteristic changes in the muscle. Finally, the functional effect that these changes have on the reflex as a fundamental motor behavior will be addressed, especially in terms of its impact on posture and balance.

Restricted access

D. Clark Dickin and Jacqueline E. Heath

Whole body vibration (WBV) has been shown to improve force and power output as well as flexibility and speed, with improvements suggested to result from reduced electromechanical delays, improved rate of force development, and sensitivity of muscle spindles. Fixed frequency studies on postural control have been somewhat equivocal; however, individualized frequency protocols have shown promising results in other motor tasks. To assess this, 18 healthy young adults experienced three 4-minute WBV sessions with postural control assessed before vibration, after multiple exposures, and during recovery, with altered levels of sensory information available to the participants. Sway velocity, sway path length, and sway area were assessed in each environment. Study findings revealed that stability was impacted following WBV, with more challenging environments eliciting improvements persisting for 20 minutes. When the environment was less challenging, postural stability was impaired; however, the effects dissipated quickly (10-20 min). It was determined that exposure to individualized frequency WBV served to impair postural control when the challenge was low, but resulted in heightened stability when the overall challenge was high and vestibular information was needed for stability.

Restricted access

Jacob Buus Andersen and Thomas Sinkjaer

Due to the complexity of applying a well-defined stretch during human walking, most of our knowledge about the short latency stretch reflex modulation in humans is based on H-reflex studies. To illuminate the difference between the two methodologies, both types of reflexes were evoked in the same subjects, same experiment. Stretch reflexes were evoked via a stretch device capable of evoking stretch reflexes of the human soleus muscle during walking. H-reflexes were elicited by an electrical stimulation of the tibial nerve at the popliteal fossa at the knee. A significantly different modulation of the two reflexes was found in the late stance where the stretch reflex decreased in relation to the H-reflex. This was consistent with an unloading of the muscle spindles during the push-off in late stance, suggesting a complex alpha-gamma coactivation, if any, at this time of the step. The soleus stretch reflex and H-reflex were compared during the stance phase of walking and sitting at matched soleus EMG activity. No difference was found in the amplitude of the stretch reflex. However, there was a significant decrease of the H-reflex during the stance phase of walking, consistent with a task-specific presynaptic mediated reflex control. It is proposed that the short latency stretch reflex during walking is not sensitive to such a presynaptic inhibition.