Search Results

You are looking at 1 - 10 of 58 items for :

  • "muscle strength and power" x
Clear All
Restricted access

Hilde Lohne-Seiler, Monica K. Torstveit and Sigmund A. Anderssen

The aim was to determine whether strength training with machines vs. functional strength training at 80% of one-repetition maximum improves muscle strength and power among the elderly. Sixty-three subjects (69.9 ± 4.1 yr) were randomized to a high-power strength group (HPSG), a functional strength group (FSG), or a nonrandomized control group (CG). Data were collected using a force platform and linear encoder. The training dose was 2 times/wk, 3 sets × 8 reps, for 11 wk. There were no differences in effect between HPSG and FSG concerning sit-to-stand power, box-lift power, and bench-press maximum force. Leg-press maximum force improved in HPSG (19.8%) and FSG (19.7%) compared with CG (4.3%; p = .026). Bench-press power improved in HPSG (25.1%) compared with FSG (0.5%, p = .02) and CG (2%, p = .04). Except for bench-press power there were no differences in the effect of the training interventions on functional power and maximal body strength.

Restricted access

Sandro Venier, Jozo Grgic and Pavle Mikulic

and performance . Sports Med . 2001 ; 31 : 785 – 807 . PubMed ID: 11583104 doi:10.2165/00007256-200131110-00002 11583104 10.2165/00007256-200131110-00002 4. Grgic J , Trexler ET , Lazinica B , Pedisic Z . Effects of caffeine intake on muscle strength and power: a systematic review and

Restricted access

Dale I. Lovell, Ross Cuneo and Greg C. Gass

This study examined the effect of aerobic training on leg strength, power, and muscle mass in previously sedentary, healthy older men (70–80 yr). Training consisted of 30–45 min of cycle ergometry at 50–70% maximal oxygen consumption (VO2max), 3 times weekly for 16 wk, then 4 wk detraining, or assignment to a nontraining control group (n = 12 both groups). Training increased leg strength, leg power, upper leg muscle mass, and VO2max above pretraining values (21%, 12%, 4%, and 15%, respectively; p < .05). However, all gains were lost after detraining, except for some gain in VO2max. This suggests that cycle ergometry is sufficient stimulus to improve neuromuscular function in older men, but gains are quickly lost with detraining. For the older population cycle ergometry provides the means to not only increase aerobic fitness but also increase leg strength and power and upper leg muscle mass. However, during periods of inactivity neuromuscular gains are quickly lost.

Restricted access

Elaine Trudelle-Jackson, Emerenciana Hines, Ann Medley and Mary Thompson

rather than muscle power as an outcome when rehabilitating patients with TKA. 6 With persistent residual deficits in muscle strength and functional performance 6 months or more after TKA, a more intensive approach may be necessary. Muscle strength and power both decrease with age, but muscle power

Restricted access

Rachel A. Hildebrand, Bridget Miller, Aric Warren, Deana Hildebrand and Brenda J. Smith

Increasing evidence indicates that compromised vitamin D status, as indicated by serum 25-hydroxyvitamin D (25-OH D), is associated with decreased muscle function. The purpose of this study was to determine the vitamin D status of collegiate athletes residing in the southern U.S. and its effects on muscular strength and anaerobic power. Collegiate athletes (n = 103) from three separate NCAA athletic programs were recruited for the study. Anthropometrics, vitamin D and calcium intake, and sun exposure data were collected along with serum 25-OH D and physical performance measures (Vertical Jump Test, Shuttle Run Test, Triple Hop for Distance Test and the 1 Repetition Maximum Squat Test) to determine the influence of vitamin D status on muscular strength and anaerobic power. Approximately 68% of the study participants were vitamin D adequate (>75 nmol/L), whereas 23% were insufficient (75–50 nmol/L) and 9%, predominantly non-Caucasian athletes, were deficient (<50 nmol/L). Athletes who had lower vitamin D status had reduced performance scores (p < .01) with odds ratios of 0.85 on the Vertical Jump Test, 0.82 on the Shuttle Run Test, 0.28 on the Triple Hop for Distance Test, and 0.23 on the 1 RM Squat Test. These findings demonstrate that even NCAA athletes living in the southern US are at risk for vitamin D insufficiency and deficiency and that maintaining adequate vitamin D status may be important for these athletes to optimize their muscular strength and power.

Restricted access

Michael J.A. Speranza, Tim J. Gabbett, David A. Greene, Rich D. Johnston, Andrew D. Townshend and Brett O’Farrell

elements of resistance training and aerobic and anaerobic conditioning, as well as rugby-league-specific drills. All participants were free from injury and midway through a 15-week preseason training program when they undertook muscle-strength and -power testing and tackling assessments. All players

Restricted access

Michael J.A. Speranza, Tim J. Gabbett, Rich D. Johnston and Jeremy M. Sheppard

Purpose:

This study examined the relationships between tackling ability, playing position, muscle strength and power qualities, and match-play tackling performance in semiprofessional rugby league players.

Methods:

Sixteen semiprofessional rugby league players (mean ± SD age 23.8 ± 1.9 y) underwent tests for muscle strength and power. Tackling ability of the players was tested using video analysis of a standardized 1-on-1 tackling drill. After controlling for playing position, players were divided into “good tackler” or “poor tackler” groups based on the median split of the results of the 1-on-1 tackling drill. A total of 4547 tackles were analyzed from video recordings of 23 matches played throughout the season.

Results:

Maximal squat was significantly associated with tackling ability (r S = .71, P < .05) and with the proportion of dominant tackles (r S = .63, P < .01). Forwards performed more tackles (P = .013, ES = 1.49), with a lower proportion of missed tackles (P = .03, ES = 1.38) than backs. Good tacklers were involved in a larger proportion of dominant tackles and smaller proportion of missed tackles than poor tacklers.

Conclusions:

These findings demonstrate that lower-body strength contributes to more effective tackling performance during both a standardized tackling assessment and match play. Furthermore, players with good tackling ability in a proficiency test were involved in a higher proportion of dominant tackles and missed a smaller proportion of tackles during match play. These results provide further evidence of the practical utility of an off-field tackling assessment in supplying information predictive of tackling performance in competition.

Restricted access

Anthony P. Marsh, Michael E. Miller, W. Jack Rejeski, Stacy L. Hutton and Stephen B. Kritchevsky

It is unclear whether strength training (ST) or power training (PT) is the more effective intervention at improving muscle strength and power and physical function in older adults. The authors compared the effects of lower extremity PT with those of ST on muscle strength and power in 45 older adults (74.8 ± 5.7 yr) with self-reported difficulty in common daily activities. Participants were randomized to 1 of 3 treatment groups: PT, ST, or wait-list control. PT and ST trained 3 times/wk for 12 wk using knee-extension (KE) and leg-press (LP) machines at ~70% of 1-repetition maximum (1RM). For PT, the concentric phase of the KE and LP was completed “as fast as possible,” whereas for ST the concentric phase was 2–3 s. Both PT and ST paused briefly at the midpoint of the movement and completed the eccentric phase of the movement in 2–3 s. PT and ST groups showed significant improvements in KE and LP 1RM compared with the control group. Maximum KE and LP power increased approximately twofold in PT compared with ST. At 12 wk, compared with control, maximum KE and LP power were significantly increased for the PT group but not for the ST group. In older adults with compromised function, PT leads to similar increases in strength and larger increases in power than ST.

Restricted access

Anni Rava, Anu Pihlak, Jaan Ereline, Helena Gapeyeva, Tatjana Kums, Priit Purge, Jaak Jürimäe and Mati Pääsuke

The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.

Restricted access

Joanna S. Kostka, Jan W. Czernicki and Tomasz J. Kostka

We assessed the relative association of quadriceps muscle strength and power as well as optimal shortening velocity (υopt) to physical functioning in 28 women aged 50–87 years with chronic osteoarthritis participating in a three-week multimodal exercise program. Quadriceps muscle strength, power, υopt, and functional performance using the Activities of Daily Living (ADL) scale, Timed Up & Go (TUG) test, Tinetti test, and 6-Minute Walking Test (6-MWT) were assessed pre- and postrehabilitation. With rehabilitation, patients improved the values of strength, power, and the results of all functional tests. Both at baseline and postrehabilitation, functional status was more strongly related to power and υopt than to strength. Functional gains obtained with rehabilitation were not related to changes in power or υopt, and only very modestly related to changes in strength. Future studies should assess the benefits and feasibility of power- and velocity-oriented training in patients with osteoarthritis.