Search Results

You are looking at 1 - 10 of 118 items for :

  • "neuromuscular fatigue" x
Clear All
Restricted access

Daria Neyroud, Jimmy Samararatne, Bengt Kayser and Nicolas Place

evaluated the extent and etiology of KE neuromuscular fatigue induced by dynamic exercise (repeated squat jumps) with and without concomitant NMES. We hypothesized that the addition of NMES to repeated squat jumps would exacerbate peripheral fatigue. Methods Participants Nine healthy, recreationally active

Restricted access

Joel Garrett, Stuart R. Graham, Roger G. Eston, Darren J. Burgess, Lachlan J. Garrett, John Jakeman and Kevin Norton

Monitoring neuromuscular fatigue (NMF) in a sport-specific activity itself has been suggested as the most optimal method for monitoring NMF status. 1 Modified field tests of neuromuscular function have been implemented due to the impractical nature of simulating sports activity, which can impede

Restricted access

George Wehbe, Tim Gabbett, Dan Dwyer, Christopher McLellan and Sam Coad

Purpose:

To compare a novel sprint test on a cycle ergometer with a countermovement-jump (CMJ) test for monitoring neuromuscular fatigue after Australian rules football match play.

Methods:

Twelve elite under-18 Australian rules football players (mean ± SD age 17.5 ± 0.6 y, stature 184.7 ± 8.8 cm, body mass 75.3 ± 7.8 kg) from an Australian Football League club’s Academy program performed a short sprint test on a cycle ergometer along with a single CMJ test 1 h prematch and 1, 24, and 48 h postmatch. The cycle-ergometer sprint test involved a standardized warm-up, a maximal 6-s sprint, a 1-min active recovery, and a 2nd maximal 6-s sprint, with the highest power output of the 2 sprints recorded as peak power (PP).

Results:

There were small to moderate differences between postmatch changes in cycle-ergometer PP and CMJ PP at 1 (ES = 0.49), 24 (ES = –0.85), and 48 h postmatch (ES = 0.44). There was a substantial reduction in cycle-ergometer PP at 24 h postmatch (ES = –0.40) compared with 1 h prematch.

Conclusions:

The cycle-ergometer sprint test described in this study offers a novel method of neuromuscular-fatigue monitoring in team-sport athletes and specifically quantifies the concentric component of the fatigue-induced decrement of force production in muscle, which may be overlooked by a CMJ test.

Restricted access

Katja Tomazin, Jean-Benoit Morin and Guillaume Y. Millet

Purpose:

To compare neuromuscular fatigue induced by repeated-sprint running vs cycling.

Methods:

Eleven active male participants performed 2 repeated-maximal-sprint protocols (5×6 s, 24-s rest periods, 4 sets, 3 min between sets), 1 in running (treadmill) and 1 in cycling (cycle ergometer). Neuromuscular function, evaluated before (PRE); 30 s after the first (S1), the second (S2), and the last set (LAST); and 5 min after the last set (POST5) determined the knee-extensor maximal voluntary torque (MVC); voluntary activation (VA); single-twitch (Tw), high- (Db100), and low- (Db10) frequency torque; and maximal muscle compound action potential (M-wave) amplitude and duration of vastus lateralis.

Results:

Peak power output decreased from 14.6 ± 2.2 to 12.4 ± 2.5 W/kg in cycling (P < .01) and from 21.4 ± 2.6 to 15.2 ± 2.6 W/kg in running (P < .001). MVC declined significantly from S1 in running but only from LAST in cycling. VA decreased after S2 (~–7%, P < .05) and LAST (~–9%, P < .01) set in repeated-sprint running and did not change in cycling. Tw, Db100, and Db10/Db100 decreased to a similar extent in both protocols (all P < .001 post-LAST). Both protocols induced a similar level of peripheral fatigue (ie, low-frequency peripheral fatigue, no changes in M-wave characteristics), while underlying mechanisms probably differed. Central fatigue was found only after running.

Conclusion:

Findings about neuromuscular fatigue resulting from RS cycling cannot be transferred to RS running.

Restricted access

Anthea C. Clarke, Judith M. Anson and David B. Pyne

Purpose:

To examine relationships between on-field game movement patterns and changes in markers of neuromuscular fatigue and muscle damage during a 2-d women’s rugby sevens tournament.

Methods:

Female national (mean ± SD n = 12, 22.3 ± 2.5 y, 1.67 ± 0.04 m, 65.8 ± 4.6 kg) and state (n = 10, 24.4 ± 4.3 y, 1.67 ± 0.03 m, 66.1 ± 7.9 kg) representative players completed baseline testing for lower-body neuromuscular function (countermovement-jump [CMJ] test), muscle damage (capillary creatine kinase [CK]), perceived soreness, and perceived recovery. Testing was repeated after games on days 1 and 2 of the tournament. GPS (5-Hz) data were collected throughout the tournament (4−6 games/player).

Results:

National players were involved in greater on-field movements for total time, distance, high-speed running (>5 m/s), and impacts >10 g (effect size [ES] = 0.55−0.97) and displayed a smaller decrement in performance from day 1 to day 2. Despite this, state players had a much greater 4-fold increase (ΔCK = 737 U/L) in CK compared with the 2-fold increase (ΔCK = 502 U/L) in national players (ES = 0.73). Both groups had similar perceived soreness and recovery while CMJ performance was unchanged. High-speed running and impacts >10 g were largely correlated (r = .66−.91) with ΔCK for both groups.

Conclusion:

A 2-day women’s rugby sevens tournament elicits substantial muscle damage; however, there was little change in lower-body neuromuscular function. Modest increases in CK can largely be attributed to high-speed running and impacts >10 g that players typically endure.

Restricted access

Stuart J. Cormack, Mitchell G. Mooney, Will Morgan and Michael R. McGuigan

Purpose:

To determine the impact of neuromuscular fatigue (NMF) assessed from variables obtained during a countermovement jump on exercise intensity measured with triaxial accelerometers (load per minute [LPM]) and the association between LPM and measures of running activity in elite Australian Football.

Methods:

Seventeen elite Australian Football players performed the Yo-Yo Intermittent Recovery Test level 2 (Yo-Yo IR2) and provided a baseline measure of NMF (flight time:contraction time [FT:CT]) from a countermovement jump before the season. Weekly samples of FT:CT, coaches’ rating of performance (votes), LPM, and percent contribution of the 3 vectors from the accelerometers in addition to high-speed-running meters per minute at >15 km/h and total distance relative to playing time (m/min) from matches were collected. Samples were divided into fatigued and nonfatigued groups based on reductions in FT:CT. Percent contributions of vectors to LPM were assessed to determine the likelihood of a meaningful difference between fatigued and nonfatigued groups. Pearson correlations were calculated to determine relationships between accelerometer vectors and running variables, votes, and Yo-Yo IR2 score.

Results:

Fatigue reduced the contribution of the vertical vector by (mean ± 90% CI) –5.8% ± 6.1% (86% likely) and the number of practically important correlations.

Conclusions:

NMF affects the contribution of individual vectors to total LPM, with a likely tendency toward more running at low speed and less acceleration. Fatigue appears to limit the influence of the aerobic and anaerobic qualities assessed via the Yo-Yo IR2 test on LPM and seems implicated in pacing.

Restricted access

Kieran Cooke, Tom Outram, Raph Brandon, Mark Waldron, Will Vickery, James Keenan and Jamie Tallent

per minutes. Discussion This study is the first to examine changes in neuromuscular fatigue in the different formats of cricket and training in elite senior crickets. It is also the first to investigate neuromuscular function in elite cricketers through both traditional-based and alternative analyses

Restricted access

Theofanis Tzatzakis, Konstantinos Papanikolaou, Dimitrios Draganidis, Panagiotis Tsimeas, Savvas Kritikos, Athanasios Poulios, Vasiliki C. Laschou, Chariklia K. Deli, Athanasios Chatzinikolaou, Alexios Batrakoulis, Georgios Basdekis, Magni Mohr, Peter Krustrup, Athanasios Z. Jamurtas and Ioannis G. Fatouros

strength of knee extensors (KE) and knee flexors (KF) of the dominant limb (DL) and nondominant limb (NDL) was evaluated at 1-, 2- and 3-hour post-SEPT as a measure of neuromuscular fatigue. Performance (jumping, strength, and speed), DOMS, and CK activity were measured preexercise, postexercise, and daily

Restricted access

Rob Gathercole, Ben Sporer, Trent Stellingwerff and Gord Sleivert

Purpose:

To examine the reliability and magnitude of change after fatiguing exercise in the countermovement-jump (CMJ) test and determine its suitability for the assessment of fatigue-induced changes in neuromuscular (NM) function. A secondary aim was to examine the usefulness of a set of alternative CMJ variables (CMJ-ALT) related to CMJ mechanics.

Methods:

Eleven male college-level team-sport athletes performed 6 CMJ trials on 6 occasions. A total of 22 variables, 16 typical (CMJ-TYP) and 6 CMJ-ALT, were examined. CMJ reproducibility (coefficient of variation; CV) was examined on participants’ first 3 visits. The next 3 visits (at 0, 24, and 72 h postexercise) followed a fatiguing high-intensity intermittent-exercise running protocol. Meaningful differences in CMJ performance were examined through effect sizes (ES) and comparisons to interday CV.

Results:

Most CMJ variables exhibited intraday (n = 20) and interday (n = 21) CVs of <10%. ESs ranging from trivial to moderate were observed in 18 variables at 0 h (immediately postfatigue). Mean power, peak velocity, flight time, force at zero velocity, and area under the force–velocity trace showed changes greater than the CV in most individuals. At 24 h, most variables displayed trends toward a return to baseline. At 72 h, small increases were observed in time-related CMJ variables, with mean changes also greater than the CV.

Conclusions:

The CMJ test appears a suitable athlete-monitoring method for NM-fatigue detection. However, the current approach (ie, CMJ-TYP) may overlook a number of key fatigue-related changes, and so practitioners are advised to also adopt variables that reflect the NM strategy used.

Restricted access

Paulo H. Marchetti, Maria I.V. Orselli and Marcos Duarte

The aim of this study was to investigate the effects of unilateral and bilateral fatigue on both postural and power bipedal tasks. Ten healthy subjects performed two tasks: bipedal quiet standing and a maximal bipedal counter-movement jumping before and after unilateral (with either the dominant or nondominant lower limb) and bilateral (with both lower limbs) fatigue. We employed two force plates (one under each lower limb) to measure the ground reaction forces and center of pressure produced by subjects during the tasks. To quantify the postural sway during quiet standing, we calculated the resultant center of pressure (COP) speed and COP area of sway, as well as the mean weight distribution between lower limbs. To quantify the performance during the countermovement jumping, we calculated the jump height and the peak force of each lower limb. We observed that both unilateral and bilateral fatigue affected the performance of maximal voluntary jumping and standing tasks and that the effects of unilateral and bilateral fatigue were stronger in the dominant limb than in the nondominant limb during bipedal tasks. We conclude that unilateral neuromuscular fatigue affects both postural and power tasks negatively.