Search Results

You are looking at 1 - 10 of 14 items for :

  • "nutrient timing" x
Clear All
Restricted access

Amelia Ferro, Guadalupe Garrido, Jorge Villacieros, Javier Pérez and Lena Grams

Physical condition and an optimized diet are relevant to enhance performance and recovery. The diet composition and meal frequency of eleven elite wheelchair basketball players were estimated using a 3-day food-weighing diary in two months during the precompetitive-period. Performance was determined through a 20 m sprint test. The players consumed 4.2 ± 0.8 meals/day in May and 4.5 ± 0.9 meals/day in June, resulting in total energy intakes of 2492 ± 362 kcal/d and 2470 ± 497 kcal/d, respectively. The macronutrient distribution was 3.8 ± 1.3 g/kg carbohydrates, 1.7 ± 0.6 g/kg protein, and 36 ± 5% of energy derived from fat in May, and 4.2 ± 1.9 g/kg carbohydrates, 1.5 ± 0.5 g/kg protein and 32 ± 5% of energy derived from fat in June. The maximum velocity of the sprint test improved from 4.77 ± 0.31 m/s in May to 5.19 ± 0.23 m/s in June. Our results revealed carbohydrate intake below and fat intake above recommendations, but improvements of dietary patterns. Further nutritional advice is necessary to ensure health and performance improvements.

Restricted access

Ida A. Heikura, Trent Stellingwerff, Antti A. Mero, Arja Leena Tuulia Uusitalo and Louise M. Burke

Contemporary nutrition guidelines promote a variety of periodized and time-sensitive recommendations, but current information regarding the knowledge and practice of these strategies among world-class athletes is limited. The aim of this study was to investigate this theme by implementing a questionnaire on dietary periodization practices in national/international level female (n = 27) and male (n = 21) middle- and long-distance runners/race-walkers. The questionnaire aimed to gain information on between and within-day dietary choices, as well as timing of pre- and posttraining meals and practices of training with low or high carbohydrate (CHO) availability. Data are shown as percentage (%) of all athletes, with differences in responses between subgroups (sex or event) shown as Chi-square x2 when p < .05. Nearly two-thirds of all athletes reported that they aim to eat more food on, or after, hard training days. Most athletes said they focus on adequate fueling (96%) and adequate CHO and protein (PRO) recovery (87%) around key sessions. Twenty-six percent of athletes (11% of middle vs 42% of long-distance athletes [x 2 (1, n = 46) = 4.308, p = .038, phi = 0.3])) reported to undertake training in the fasted state, while 11% said they periodically restrict CHO intake, with 30% ingesting CHO during training sessions. Our findings show that elite endurance athletes appear to execute pre- and post-key session nutrition recovery recommendations. However, very few athletes deliberately undertake some contemporary dietary periodization approaches, such as training in the fasted state or periodically restricting CHO intake. This study suggests mismatches between athlete practice and current and developing sports nutrition guidelines.

Restricted access

Ida A. Heikura, Louise M. Burke, Antti A. Mero, Arja Leena Tuulia Uusitalo and Trent Stellingwerff

We investigated one week of dietary microperiodization in elite female (n = 23) and male (n = 15) runners and race-walkers by examining the frequency of training sessions and recovery periods conducted with recommended carbohydrate (CHO) and protein availability. Food and training diaries were recorded in relation to HARD (intense or >90min sessions; KEY) versus RECOVERY days (other-than KEY sessions; EASY). The targets for amount and timing of CHO and protein around KEY sessions were based on current nutrition recommendations. Relative daily energy and CHO intake was significantly (p < .05) higher in males (224 ± 26 kJ/kg/d, 7.3 ± 1.4 g/kg/d CHO) than females (204 ± 29 kJ/kg/d, 6.2 ± 1.1 g/kg/d CHO) on HARD days. However, when adjusted for training volume (km), there was no sex-based difference in CHO intake daily (HARD: 0.42 ± 0.14 vs 0.39 ± 0.15 g/kg/km). Females appeared to periodize energy and protein intake with greater intakes on HARD training days (204 ± 29 vs 187 ± 35 kJ/kg/d, p = .004; 2.0 ± 0.3 vs 1.9 ± 0.3 g/kg/d protein, p = .013), while males did not periodize intakes. Females showed a pattern of periodization of postexercise CHO for KEY vs EASY (0.9 ± 0.4 vs 0.5 ± 0.3 g/kg; p < .05) while males had higher intakes but only modest periodization (1.3 ± 0.9 vs 1.0 ± 0.4; p = .32). There was only modest evidence from female athletes of systematic microperiodization of eating patterns to meet contemporary sports nutrition guidelines. While this pattern of periodization was absent in males, in general they consumed more energy and CHO daily and around training sessions compared with females. Elite endurance athletes do not seem to systematically follow the most recent sports nutrition guidelines of periodized nutrition.

Open access

Trent Stellingwerff, James P. Morton and Louise M. Burke

Over the last decade, in support of training periodization, there has been an emergence around the concept of nutritional periodization. Within athletics (track and field), the science and art of periodization is a cornerstone concept with recent commentaries emphasizing the underappreciated complexity associated with predictable performance on demand. Nevertheless, with varying levels of evidence, sport and event specific sequencing of various training units and sessions (long [macrocycle; months], medium [mesocycle; weeks], and short [microcycle; days and within-day duration]) is a routine approach to training periodization. Indeed, implementation of strategic temporal nutrition interventions (macro, meso, and micro) can support and enhance training prescription and adaptation, as well as acute event specific performance. However, a general framework on how, why, and when nutritional periodization could be implemented has not yet been established. It is beyond the scope of this review to highlight every potential nutritional periodization application. Instead, this review will focus on a generalized framework, with specific examples of macro-, meso-, and microperiodization for the macronutrients of carbohydrates, and, by extension, fat. More specifically, the authors establish the evidence and rationale for situations of acute high carbohydrate availability, as well as the evidence for more chronic manipulation of carbohydrates coupled with training. The topic of periodized nutrition has made considerable gains over the last decade but is ripe for further scientific progress and field application.

Restricted access

Kim Beals, Katherine A. Perlsweig, John E. Haubenstriker, Mita Lovalekar, Chris P. Beck, Darcie L. Yount, Matthew E. Darnell, Katelyn Allison and Bradley C. Nindl

improve exercise performance and the adaptive response to exercise training. Little research exists on nutrient timing in military personnel. Because of the nature of their training and operational demands, there are extended time periods between eating episodes, which contributes to inadequate energy and

Restricted access

Richard B. Kreider

them make wise food selections. Many sport dietitians take athletes to the grocery store to teach them how to purchase healthy foods, as well as teaching them how to prepare meals. They also teach athletes about the importance of hydration and nutrient timing and provide education about dietary

Restricted access

Stephanie K. Gaskell and Ricardo J.S. Costa

– 1069 . PubMed ID: 24748459 doi:10.1007/s40279-014-0189-3 10.1007/s40279-014-0189-3 Kerksick , C. , Harvey , T. , Stout , J. , Campbell , B. , Wilborn , C. , Kreider , R. , . . . Antonio , J. ( 2008 ). International Society of Sports Nutrition position stand: Nutrient timing . Journal of

Restricted access

Bill I. Campbell, Danielle Aguilar, Laurin Conlin, Andres Vargas, Brad Jon Schoenfeld, Amey Corson, Chris Gai, Shiva Best, Elfego Galvan and Kaylee Couvillion

acid concentrations . Nutrients, 4 ( 10 ), 1504 – 1517 . PubMed ID: 23201768 doi:10.3390/nu4101504 10.3390/nu4101504 Ivy , J.L. , & Ferguson-Stegall , L.M. ( 2014 ). Nutrient timing: The means to improved exercise performance, recovery, and training adaptation . American Journal of

Restricted access

Fernando Naclerio, Eneko Larumbe-Zabala, Mar Larrosa, Aitor Centeno, Jonathan Esteve-Lanao and Diego Moreno-Pérez

.1371/journal.pone.0157406 Kerksick , C.M. , Arent , S. , Schoenfeld , B.J. , Stout , J.R. , Campbell , B. , Wilborn , C.D. , … Antonio , J. ( 2017 ). International society of sports nutrition position stand: Nutrient timing . Journal of the International Society of Sports Nutrition, 14 , 33

Restricted access

Mads S. Larsen, Dagmar Clausen, Astrid Ank Jørgensen, Ulla R. Mikkelsen and Mette Hansen

society of sports nutrition position stand: Nutrient timing . Journal of the International Society of Sports Nutrition, 14 , 33 . PubMed ID: 28919842 doi:10.1186/s12970-017-0189-4 10.1186/s12970-017-0189-4 Keytel , L.R. , Goedecke , J.H. , Noakes , T.D. , Hiiloskorpi , H. , Laukkanen , R