Search Results

You are looking at 1 - 10 of 50 items for :

Clear All
Restricted access

Fabiana Rodrigues Osti, Caroline Ribeiro de Souza and Luis Augusto Teixeira

training on a regular stable rigid ground in older individuals. Although different equipment has been used to create unstable support surfaces for training, on-water activities requiring balancing the body on an unstable board might induce a similar effect, leading to increased balance gains. Preliminary

Restricted access

Cruz Hogan, Martyn J. Binnie, Matthew Doyle, Leanne Lester and Peter Peeling

performance between ergometer and on-water performance. 11 Furthermore, ergometer-based testing has also been shown to overestimate measures of internal and external load compared with on-water testing (ie, BLa, rating of perceived exertion [RPE], and stroke rate [SR]). 12 , 13 To classify on-water intensity

Restricted access

Chelsie E. Winchcombe, Martyn J. Binnie, Matthew M. Doyle, Cruz Hogan and Peter Peeling

the targeted physiological capacities required for performance. However, research has suggested that if characteristics of the training activity differ from those found in the laboratory setting (ie, on-water [OW]), then the use of these individualized zones may potentially overestimate or

Restricted access

Andrew J. Vogler, Anthony J. Rice and Christopher J. Gore

Purpose:

This study evaluated the validity of ergometer tests against the criterion of on-water rowing and determined the reliability of feld measurements by comparing results between ergometer (ERG) and on-water (OW) tests.

Methods:

Seven male rowers completed incremental tests on a Concept2 rowing ergometer and in a single scull. Average power output, oxygen consumption (VO2), heart rate (HR), blood lactate concentration (BLa) and distance completed were measured during each ERG and OW workload.

Data treatment:

Linear regression between power output and HR, BLa, VO2 and distance allowed submaximal results to be compared between ERG and OW tests at equivalent intensities based on five standard power outputs. Submaximal results were analyzed using repeated measure factorial ANOVAs and maximal data used dependent t tests (P < .05), the magnitude of differences were also classified using effect size analyses. The reliability of repeated measurements was established using Typical Error.

Results:

Differences between ERG and OW submaximal results were not statistically significant for power output, HR, BLa, and VO2, but distance completed (P < .001) was higher during the ERG test. However, the magnitude of physiological response differences between the ERG and OW tests varied between individuals. Mean HR at anaerobic threshold showed good agreement between both tests (r = .81), but the standard error of the estimate was 9 beats per minute.

Conclusions:

Individual variation in physiological response differences between ERG and OW tests meant that training intensity recommendations from the ERG test were not applicable to on-water training for some rowers, but provided appropriate prescriptions for most athletes.

Restricted access

Santiago Lopez, Jan G. Bourgois, Enrico Tam, Paolo Bruseghini and Carlo Capelli

Purpose:

To explore the cardiovascular and metabolic responses of 9 Optimist sailors (12.7 ± 0.8 y, 153 ± 9 cm, 41 ± 6 kg, sailing career 6.2 ± 1 y, peak oxygen uptake [V̇O2peak] 50.5 ± 4.5 mL · min−1 · kg−1) during on-water upwind sailing with various wind intensities (W).

Methods:

In a laboratory session, peak V̇O2, beat-by-beat cardiac output (Q̇), mean arterial blood pressure (MAP), and heart rate (f H) were measured using a progressive cycle ramp protocol. Steady-state V̇O2, Q̇, MAP, and f H at 4 submaximal workloads were also determined. During 2 on-water upwind sailing tests (constant course and with tacks), W, Q̇, MAP, and f H were measured for 15 min. On-water V̇O2 was estimated on the basis of steady-state f H measured on water and of the individual ΔV̇O2f H relationship obtained in the laboratory.

Results:

V̇O2, f H, and Q̇ expressed as percentage of the corresponding peak values were linearly related with W; exercise intensity during on-water sailing corresponded to 46–48% of V̇O2peak. MAP and total vascular peripheral resistance (TPR = MAP/Q̇) were larger (P < .005) during on-water tests (+39% and +50%, respectively) than during cycling, and they were correlated with W. These responses were responsible for larger values of the double (DP) and triple (TP) products of the heart during sailing than during cycling (P < .005) (+37% and +32%, respectively).

Conclusions:

These data indicate that the cardiovascular system was particularly stressed during upwind sailing even though the exercise intensity of this activity was not particularly high.

Restricted access

David A. Aitken and Robert J. Neal

A system was developed to quantify the on-water forces, impulse, and power generated by a kayak paddlet. The system is lightweight (<1 kg), portable (i.e., it can be used in single [Kl], double [K2], and fours [K4] boats), and does not affect the integrity of either the kayak paddle or the boat. Changes in the strain on the kayak paddle were measured by force transducers attached to the shaft of the paddle, and these signals were then recorded on an FM tape recorder located in the boat. The data were then analyzed by the Kayak Data Acquisition and Analysis System software which graphically presented the paddlers' force time curve as well as a printed tabular report on the paddlers' average force, impulse, work, power, and the instantaneous boat velocity.

Restricted access

Peter Peeling, Gregory R. Cox, Nicola Bullock and Louise M. Burke

We assessed the ingestion of a beetroot juice supplement (BR) on 4-min laboratory-based kayak performance in national level male (n = 6) athletes (Study A), and on 500 m on-water kayak time-trial (TT) performance in international level female (n = 5) athletes (Study B). In Study A, participants completed three laboratory-based sessions on a kayak ergometer, including a 7 × 4 min step test, and two 4 min maximal effort performance trials. Two and a half hours before the warm-up of each 4 min performance trial, athletes received either a 70 ml BR shot containing ~4.8 mmol of nitrate, or a placebo equivalent (BRPLA). The distance covered over the 4 min TT was not different between conditions; however, the average VO2 over the 4 min period was significantly lower in BR (p = .04), resulting in an improved exercise economy (p = .05). In Study B, participants completed two field-based 500 m TTs, separated by 4 days. Two hours before each trial, athletes received either two 70 ml BR shots containing ~9.6 mmol of nitrate, or a placebo equivalent (BRPLA). BR supplementation significantly enhanced TT performance by 1.7% (p = .01). Our results show that in national-level male kayak athletes, commercially available BR shots (70 ml) containing ~4.8 mmol of nitrate improved exercise economy during laboratory-based tasks predominantly reliant on the aerobic energy system. Furthermore, greater volumes of BR (140 ml; ~9.6 mmol nitrate) provided to international-level female kayak athletes resulted in enhancements to TT performance in the field.

Restricted access

Neil M. Johannsen, Zebblin M. Sullivan, Nicole R. Warnke, Ann L. Smiley-Oyen, Douglas S. King and Rick L. Sharp

Purpose:

To determine whether chicken noodle soup before exercise increases ad libitum water intake, fluid balance, and physical and cognitive performance compared with water.

Methods:

Nine trained men (age 25 ± 3 yr, VO2peak 54.2 ± 5.1 ml · kg−1 · min−1; M ± SD) performed cycle exercise in the heat (wet bulb globe temperature = 25.9 ± 0.4 °C) for 90 min at 50% VO2peak, 45 min after ingesting 355 ml of either commercially available bottled water (WATER) or chicken noodle soup (SOUP). The same bottled water was allowed ad libitum throughout both trials. Participants then completed a time trial to finish a given amount of work (10 min at 90% VO2peak; n = 8). Cognitive performance was evaluated by the Stroop color–word task before, every 30 min during, and immediately after the time trial.

Results:

Ad libitum water intake throughout steady-state exercise was greater in SOUP than with WATER (1,435 ± 593 vs. 1,163 ± 427 g, respectively; p < .03). Total urine volume was similar in both trials (p = .13), resulting in a trend for greater water retention in SOUP than in WATER (87.7% ± 7.6% vs. 74.9% ± 21.7%, respectively; p = .09), possibly due to a change in free water clearance (–0.32 ± 1.22 vs. 0.51 ± 1.06 ml/min, respectively; p = .07). Fluid balance tended to be improved with SOUP (–106 ± 603 vs. –478 ± 594 g, p = .05). Likewise, change in plasma volume tended to be reduced in SOUP compared with WATER (p = .06). Only mild dehydration was achieved (<1%), and physical performance was not different between treatments (p = .77). The number of errors in the Stroop color–word task was lower in SOUP throughout the entire trial (treatment effect; p = .04).

Conclusion:

SOUP before exercise increased ad libitum water intake and may alter kidney function.

Restricted access

Darren Steeves, Leo J. Thornley, Joshua A. Goreham, Matthew J. Jordan, Scott C. Landry and Jonathon R. Fowles

. Reliability Testing Ten highly trained senior national team athletes (6 males and 4 females) participated in the repeat trunk maximal strength protocols. Kayakers were preparing for competition and were completing 7 to 10 on-water sessions and 3 off-water strength sessions per week. Participant

Restricted access

Myriam Paquette, François Bieuzen and François Billaut

muscle oxygenation during on-water race efforts. Evidence suggests that muscle O 2 extraction might be an important physiological factor for canoe–kayak performance. Kayak races are performed at supramaximal (>VO 2 max) intensities, 2 which are associated with powerful muscle contractions that can