Search Results

You are looking at 1 - 10 of 46 items for :

  • "orthopedic injury" x
Clear All
Restricted access

Tricia Majewski-Schrage and Kelli Snyder

Clinical Scenario:

Managing edema after trauma or injury is a primary concern for health care professionals, as it is theorized that delaying the removal of edema will increase secondary injury and result in a longer recovery period. The inflammatory process generates a series of events, starting with bleeding and ultimately leading to fluid accumulation in intercellular spaces and the formation of edema. Once edema is formed, the lymphatic system plays a tremendous role in removing excess interstitial fluid and returning the fluid to the circulatory system. Therefore, rehabilitation specialists ought to use therapies that enhance the uptake of edema via the lymphatic system to manage edema; however, the modalities commonly used are ice, compression, and elevation. Modalities such as these may be effective at preventing swelling but present limited evidence to suggest that the function of the lymphatic system is enhanced. Manual lymphatic drainage (MLD) is a manual therapy technique that assists the lymphatic system function by promoting variations in interstitial pressures by applying light pressure using different hand movements.

Focused Clinical Question:

Does MLD improve patient- and disease-oriented outcomes for patients with orthopedic injuries?

Restricted access

Rachel S. Johnson, Kendall H. Scott and Robert C. Lynall

termination trials, meaning that participants took longer to stabilize during gait termination. Gait termination is a measure of functional balance that is commonly used in other neuropathological populations but has been minimally explored following sports-related orthopedic injuries or concussion. 1 , 9

Restricted access

Lindsey Eberman, Heather Mata and Leamor Kahanov

Student acquisition of psychomotor skills in athletic training is diffcult, particularly those pertaining to non-orthopedic injuries and illnesses, which are less common in our patient populations. We provide examples of lesson plans to improve physical examination of the thorax and abdomen. Each lesson (the scratch test, utilization of a noise-immune stethoscope, tactile fremitus, and intent auscultation) allows students to engage in performance of the skill and expand contextual knowledge to enhance skill acquisition and learning.

Restricted access

Konstantinos Fousekis, Evdokia Billis, Charalampos Matzaroglou, Konstantinos Mylonas, Constantinos Koutsojannis and Elias Tsepis

Context:

Elastic bandages are commonly used in sports to treat and prevent sport injuries.

Objective:

To conduct a systematic review assessing the effectiveness of elastic bandaging in orthopedic- and sports-injury prevention and rehabilitation.

Evidence Acquisition:

The researchers searched the electronic databases MEDLINE, CINAHL, SPORTDiscus, EMBASE, and Physiotherapy Evidence Database (PEDro) with keywords elastic bandaging in combination, respectively, with first aid, sports injuries, orthopedic injuries, and sports injuries prevention and rehabilitation. Research studies were selected based on the use of the term elastic bandaging in the abstract. Final selection was made by applying inclusion and exclusion criteria to the full text. Studies were included if they were peer-reviewed clinical trials written in English on the effects of elastic bandaging for orthopedic-injury prevention and rehabilitation.

Evidence Synthesis:

Twelve studies met the criteria and were included in the final analysis. Data collected included number of participants, condition being treated, treatment used, control group, outcome measures, and results. Studies were critically analyzed using the PEDro scale.

Conclusions:

The studies in this review fell into 2 categories: studies in athletes (n = 2) and nonathletes (n = 10). All included trials had moderate to high quality, scoring ≥5 on the PEDro scale. The PEDro scores for the studies in athletes and nonathletes ranged from 5 to 6 out of 10 and from 5 to 8 out of 10, respectively. The quality of studies was mixed, ranging from higher- to moderate-quality methodological clinical trials. Overall, elastic bandaging can assist proprioceptive function of knee and ankle joint. Because of the moderate methodological quality and insufficient number of clinical trials, further effects of elastic bandaging could not be confirmed.

Restricted access

Audrey R.C. Elias, Curt D. Hammill and Ryan L. Mizner

Though essential to athletic performance, the ability to land from a jump often remains limited following injury. While recommended, jump training is difficult to include in rehabilitation programs due to high impact forces. Body weight support (BWS) is frequently used in rehabilitation of gait following neurological and orthopedic injury, and may also allow improved rehabilitation of high-impact tasks. There is a differential effect of BWS on walking and running gaits, and the effect of BWS on movements with relatively large vertical displacement is unknown. The current study evaluates the effect of BWS on a replicable singleleg hopping task. We posited that progressive BWS would decrease limb loading while maintaining the joint kinematics of the task. Twenty-eight participants repetitively hopped on and off a box at each of four BWS levels. Peak vertical ground reaction forces decreased by 22.5% between 0% and 30% BWS (P < .001). Average hip, knee, and ankle internal moments decreased by 0.5 N·m/kg each. Slight kinematic changes across BWS levels were clinically insignificant. The high level of task specificity evidenced by consistent kinematics coupled with a similar reduction of internal moment at each joint suggests that BWS may be a useful strategy for rehabilitation of jumping tasks.

Restricted access

Steven Malvasi, Brian Gloyeske, Matthew Johnson and Timothy Miller

Background:

Injury to the anterior cruciate ligament (ACL) is one of the most common orthopedic injuries in the United States, while injury to the patellar tendon (PT) is less common. A combined rupture to the ACL and PT is consequentially uncommon and increases the difficulty of a correct initial diagnosis. The purpose of this paper is to critically appraise the current peer-reviewed literature regarding multi-ligamentous knee injuries (MLKI) in sport.

Methods:

A systematic review was undertaken to identify all relevant peer-reviewed articles regarding MLKI from March 1980 to January 2015. All articles pertaining to simultaneous rupture of the ACL and PT were included for review.

Results:

A total of 27 cases presented in 15 articles were used. Findings suggest that the combination of a palpable gap over the PT, a positive Lachman test, inability to complete terminal knee extension, and a superior position of the patella are clinical examination markers for a possible MLKI involving the ACL and PT.

Conclusion:

Simultaneous rupture to the ACL and PT is incredibly rare within the sport population, making diagnosis and treatment of such injury challenging. A thorough examination of the extensor mechanism of the knee is important in making the proper diagnosis.

Restricted access

Gregory M. Gutierrez, Nicole D. Jackson, Kristin A. Dorr, Sarah E. Margiotta and Thomas W. Kaminski

Context:

Lateral ankle sprains occur more frequently than any other orthopedic injury. Athletes often report sustaining more injuries late in competition when fatigue is present.

Objective:

To evaluate neuromuscular function of the ankle musculature after fatigue. Design: Experimental, pretest-posttest.

Setting:

Research laboratory.

Participants:

Ten female and 9 male college-aged subjects.

Intervention:

Fatigue was induced via continuous concentric and eccentric muscle actions of the ankle: inversion (INV), eversion (EV), plantar flexion (PF), and dorsiflexion (DF).

Main Outcome Measures:

Peak torque (PT), peak EMG, and median frequency (MF) were calculated prefatigue and postfatigue in the tibialis anterior (TA), peroneus longus (PER), and lateral gastrocnemius (GAS) muscles.

Results:

Main effects were noted for test (P < 0.0125) in all statistical tests performed indicating changes in PT, peak EMG, and MF after fatigue.

Conclusions:

A significant decrease in MF of the PER muscle after PF fatigue and corresponding with a decreased firing rate, may be of importance, especially with regard to the role in countering the violent moment seen with inversion ankle sprains.

Restricted access

Jonathan S. Goodwin, Robert A. Creighton, Brian G. Pietrosimone, Jeffery T. Spang and J. Troy Blackburn

Context: Orthotic devices such as medial unloader knee braces and lateral heel wedges may limit cartilage loading following trauma or surgical repair. However, little is known regarding their effects on gait biomechanics in young, healthy individuals who are at risk of cartilage injury during physical activity due to greater athletic exposure compared with older adults. Objective: Determine the effect of medial unloader braces and lateral heel wedges on lower-extremity kinematics and kinetics in healthy, young adults. Design: Cross-sectional crossover design. Setting: Laboratory setting. Patients: Healthy, young adults who were recreationally active (30 min/d for 3 d/wk) between 18 and 35 years of age, who were free from orthopedic injury for at least 6 months, and with no history of lower-extremity orthopedic surgery. Interventions: All subjects completed normal over ground walking with a medial unloader brace at 2 different tension settings and a lateral heel wedge for a total of 4 separate walking conditions. Main Outcome Measures: Frontal plane knee angle at heel strike, peak varus angle, peak internal knee valgus moment, and frontal plane angular impulse were compared across conditions. Results: The medial unloader brace at 50% (−2.04° [3.53°]) and 100% (−1.80° [3.63°]) maximum load placed the knee in a significantly more valgus orientation at heel strike compared with the lateral heel wedge condition (−0.05° [2.85°]). However, this difference has minimal clinical relevance. Neither of the orthotic devices altered knee kinematics or kinetics relative to the control condition. Conclusions: Although effective in older adults and individuals with varus knee alignment, medial unloader braces and lateral heel wedges do not influence gait biomechanics in young, healthy individuals.

Open access

Bradley J. Conant, Nicole A. German and Shannon L. David

Clinical Scenario: Rates of ulnar collateral ligament (UCL) injuries continue to rise in overhead athletes of all ages. Surgical interventions require minimally 6 months and up to 2 years of rehabilitation. Younger athletes and those with partial tears have seen positive results with conservative treatment approaches. Platelet-rich plasma (PRP) continues to be studied with various orthopedic injuries, and its use has the potential to improve return-to-sport rates and reduce recovery time. Focused Clinical Question: Do PRP injections improve conservative treatment outcomes in overhead athletes with partial tears of the UCL compared with conservative treatment alone regarding return to participation? Summary of Search, Best Evidence Appraised, and Key Findings: A literature search was performed to locate all studies investigating outcomes when PRP is included in a conservative treatment program for overhead athletes with partial UCL tears. Three case series qualified and were reviewed. Clinical Bottom Line: Current evidence suggests that including PRP in a conservative treatment program can improve outcomes in overhead athletes with partial UCL tears. Athletes whose treatment included PRP show higher return-to-competition rates and shorter recovery times compared with athletes who used rehabilitation alone. Athletes with grade-1 and proximal-based grade-2 injuries returned to competition at rates comparable with athletes undergoing surgical intervention. For optimal conservative management outcomes, PRP injections should be recommended for treatment of partial UCL tears. Strength of Recommendation: The studies qualifying for inclusion are level 4 evidence based on the 2011 Oxford Centre for Evidence-Based Medicine levels of evidence. The studies are well designed and show consistent results, but higher level studies need to demonstrate similar results to improve the body of evidence. The strength of recommendation is C.

Restricted access

Bradley T. Hayes, Rod A. Harter, Jeffrey J. Widrick, Daniel P. Williams, Mark A. Hoffman and Charlie A. Hicks-Little

Context:

Static stretching is commonly used during the treatment and rehabilitation of orthopedic injuries to increase joint range of motion (ROM) and muscle flexibility. Understanding the physiological adaptations that occur in the neuromuscular system as a result of long-term stretching may provide insight into the mechanisms responsible for changes in flexibility.

Objective:

To examine possible neurological origins and adaptations in the Ia-reflex pathway that allow for increases in flexibility in ankle ROM, by evaluating the reduction in the synaptic transmission of Ia afferents to the motoneuron pool.

Design:

Repeated-measures, case-controlled study.

Setting:

Sports medicine research laboratory.

Participants:

40 healthy volunteers with no history of cognitive impairment, neurological impairment, or lower extremity surgery or injury within the previous 12 mo.

Intervention:

Presynaptic and postsynaptic mechanisms were evaluated with a chronic stretching protocol. Twenty subjects stretched 5 times a wk for 6 wk. All subjects were measured at baseline, 3 wk, and 6 wk.

Main Outcome Measures:

Ankle-dorsiflexion ROM, Hmax:Mmax, presynaptic inhibition, and disynaptic reciprocal inhibition.

Results:

Only ROM had a significant interaction between group and time, whereas the other dependent variables did not show significant differences. The experimental group had significantly improved ROM from baseline to 3 wk (mean 6.2 ± 0.9, P < .001), 3 wk to 6 wk (mean 5.0 ± 0.8, P < .001), and baseline to 6 wk (mean 11.2 ±0.9, P < .001).

Conclusions:

Ankle dorsiflexion increased by 42.25% after 6 wk of static stretching, but no significant neurological changes resulted at any point of the study, contrasting current literature. Significant neuromuscular origins of adaptation do not exist in the Ia-reflex-pathway components after a long-term stretching program as currently understood. Thus, any increases in flexibility are the result of other factors, potentially mechanical changes or stretch tolerance.