Search Results

You are looking at 1 - 10 of 396 items for :

  • "oxygen consumption" x
Clear All
Restricted access

David C. Nieman, Melanie D. Austin, Shannon M. Chilcote and Laura Benezra

The purpose of this study was to assess the validity and reliability of the MedGem™ device to measure resting metabolic rate (RMR) in children. Subjects included 59 children (29 boys, 30 girls; mean age, 11.0 ± 0.2 y). Subjects were given 4 RMR tests during 1 test session, cconsisting of 2 Douglas bag and 2 MedGem tests, in random counterbalanced order. No significant differences were found between Douglas bag and MedGem systems for oxygen consumption (209 ± 5 and 213 ± 5 mL/min, respectively, P = 0.106, r = 0.911, mean ± standard deviation absolute difference 3.72 ± 17.40 mL/min) or RMR (1460 ± 39 and 1477 ± 35 kcal/d, P = 0.286, r = 0.909, mean ± standard deviation absolute difference 17.4 ± 124 kcal/d). Standard error of estimates for oxygen consumption and RMR were 17.4 mL/min and 124 kcal/d, respectively. In conclusion, these data indicate that the MedGem is a reliable and valid system for measuring oxygen consumption and RMR in children.

Restricted access

Antonio Paoli, Giuseppe Marcolin, Fabio Zonin, Marco Neri, Andrea Sivieri and Quirico F. Pacelli

Exercise and nutrition are often used in combination to lose body fat and reduce weight. In this respect, exercise programs are as important as correct nutrition. Several issues are still controversial in this field, and among them there are contrasting reports on whether training in a fasting condition can enhance weight loss by stimulating lipolytic activity. The authors’ purpose was to verify differences in fat metabolism during training in fasting or feeding conditions. They compared the effect on oxygen consumption (VO2) and substrate utilization, estimated by the respiratory-exchange ratio (RER), in 8 healthy young men who performed the same moderate-intensity training session (36 min of cardiovascular training on treadmill at 65% maximum heart rate) in the morning in 2 tests in random sequence: FST test (fasting condition) without any food intake or FED test (feeding condition) after breakfast. In both cases, the same total amount and quality of food was assumed in the 24 hr after the training session. The breakfast, per se, increased both VO2 and RER significantly (4.21 vs. 3.74 and 0.96 vs. 0.84, respectively). Twelve hours after the training session, VO2 was still higher in the FED test, whereas RER was significantly lower in the FED test, indicating greater lipid utilization. The difference was still significant 24 hr after exercise. The authors conclude that when moderate endurance exercise is done to lose body fat, fasting before exercise does not enhance lipid utilization; rather, physical activity after a light meal is advisable.

Restricted access

Darlene A. Sedlock, Man-Gyoon Lee, Michael G. Flynn, Kyung-Shin Park and Gary H. Kamimori

Literature examining the effects of aerobic exercise training on excess postexercise oxygen consumption (EPOC) is sparse. In this study, 9 male participants (19–32 yr) trained (EX) for 12 wk, and 10 in a control group (CON) maintained normal activity. VO2max, rectal temperature (Tre), epinephrine, norepinephrine, free fatty acids (FFA), insulin, glucose, blood lactate (BLA), and EPOC were measured before (PRE) and after (POST) the intervention. EPOC at PRE was measured for 120 min after 30 min of treadmill running at 70% VO2max. EX completed 2 EPOC trials at POST, i.e., at the same absolute (ABS) and relative (REL) intensity; 1 EPOC test for CON served as both the ABS and REL trial because no significant change in VO2max was noted. During the ABS trial, total EPOC decreased significantly (p < .01) from PRE (39.4 ± 3.6 kcal) to POST (31.7 ± 2.2 kcal). Tre, epinephrine, insulin, glucose, and BLA at end-exercise or during recovery were significantly lower and FFA significantly higher after training. Training did not significantly affect EPOC during the REL trial; however, epinephrine was significantly lower, and norepinephrine and FFA, significantly higher, at endexercise after training. Results indicate that EPOC varies as a function of relative rather than absolute metabolic stress and that training improves the efficiency of metabolic regulation during recovery from exercise. Mechanisms for the decreased magnitude of EPOC in the ABS trial include decreases in BLA, Tre, and perhaps epinephrine-mediated hepatic glucose production and insulin-mediated glucose uptake.

Restricted access

Eadric Bressel and Gary D. Heise

The purpose of this study was to compare muscle activity, kinematic, and oxygen consumption characteristics between forward and reverse arm cranking. Twenty able-bodied men performed 5-min exercise bouts of forward and reverse arm cranking while electromyographic (EMG), kinematic, and oxygen consumption data were collected. EMG activity of biceps brachii, triceps brachii, deltoid, and infraspinatus muscles were recorded and analyzed to reflect on-time durations and amplitudes for each half-cycle (first 180° and second 180° of crank cycle). Kinematic data were quantified from digitization of video images, and oxygen consumption was calculated from expired gases. Dependent measures were analyzed with a MANOVA and follow-up univariate procedures; alpha was set at .01. The biceps brachii, deltoid, and infraspinatus muscles displayed greater on-time durations and amplitudes for select half-cycles of reverse arm cranking compared to forward arm cranking (p < 0.01). Peak wrist flexion was 9% less in reverse arm cranking (p < 0.01), and oxygen consumption values did not differ between conditions (p = 0.25). Although there were no differences in oxygen consumption and only minor differences kinematically, reverse arm cranking requires greater muscle activity from the biceps brachii, deltoid, and infraspinatus muscles. These results may allow clinicians to more effectively choose an arm cranking direction that either minimizes or maximizes upper extremity muscle activity depending on the treatment objectives.

Restricted access

Kristin L. Osterberg and Christopher L. Melby

This study determined the effect of an intense bout of resistive exercise on postexercise oxygen consumption, resting metabolic rate, and resting fat oxidation in young women (N = 7, ages 22-35). On the morning of Day 1, resting metabolic rate (RMR) was measured by indirect calorimetry. At 13:00 hr, preexercise resting oxygen consumption was measured followed by 100 min of resistive exercise. Postexercise oxygen consumption was then measured for a 3-hr recovery period. On the following morning (Day 2), RMR was once again measured in a fasted state at 07:00. Postexercise oxygen consumption remained elevated during the entire 3-hr postexercise recovery period compared to the pre-exercise baseline. Resting metabolic rate was increased by 4.2% (p < .05) from Day 1 (morning prior to exercise: 1,419 ± 58 kcal/24 hr) compared to Day 2 (16 hr following exercise: 1,479 ± 65 kcal/24 hr). Resting fat oxidation as determined by the respiratory exchange ratio was also significantly elevated on Day 2 compared to Day 1. These results indicate that among young women, acute strenuous resistance exercise of the nature used in this study is capable of producing modest but prolonged elevations of postexercise metabolic rate and possibly fat oxidation.

Restricted access

William McGarvey, Richard Jones and Stewart Petersen

The purpose of this investigation was to examine the effect of interval (INT) and continuous (CON) cycle exercise on excess post-exercise oxygen consumption (EPOC). Twelve males first completed a graded exercise test for VO2max and then the two exercise challenges in random order on separate days approximately 1 wk apart. The INT challenge consisted of seven 2 min work intervals at 90% VO2max, each followed by 3 min of relief at 30% VO2max. The CON exercise consisted of 30 to 32 min of continuous cycling at 65% VO2max. Gas exchange and heart rate (HR) were measured for 30 min before, during, and for 2 h post-exercise. Three methods were used to analyze post-exercise oxygen consumption and all produced similar results. There were no significant differences in either the magnitude or duration of EPOC between the CON and INT protocols. HR, however, was higher (P < 0.05) while respiratory exchange ratio (RER) was lower (P < 0.05) following INT. These results indicate that when total work was similar, the magnitude and duration of EPOC were similar following CON or INT exercise. The differences in HR and RER during recovery suggest differential physiological responses to the exercise challenges.

Restricted access

John A. Mercer, Janet S. Dufek and Barry T. Bates

Objective:

To compare peak oxygen consumption (VO2) and heart rate (HR) during treadmill (TM) running and exercise on an elliptical trainer (ET).

Design:

A graded exercise test (GXT) during TM running and ET exercise.

Participants:

Physically active college students (N = 14; 25 ± 4.6 years). Each completed a TM GXT and ET GXT on separate days.

Results:

There were no differences in either VO2peak or peak HR between TM (53.0 ± 7.7 ml · kg–1 · min–1, 193.4 ± 9.4 bpm) and ET (51.6 ± 10.7 ml · kg–1 · min–1, 191.2 ± 11.5 bpm; P > .05). Correlations between HR and VO2 data for all stages of exercise for all subjects were similar between machines (ET: r = .88; TM: r = .95; P > .05).

Conclusion:

No adjustments to the target HR used during TM running are necessary when using the ET.

Restricted access

Leona J. Holland, Marcel Bouffard and Denise Wagner

The reliability of oxygen consumption (VO2), heart rate (HR), and rating of perceived exertion (RPE) at three different workloads was examined during an arm cranking exercise task. Nine persons with multiple sclerosis (MS) and confined to a wheelchair each performed two sessions of discontinuous, submaximal aerobic test on an arm ergometer. Comparisons of the test scores and generalizability theory were used to analyze the data. Both HR and VO2 were found to be reliable measures under the conditions used in this study. RPE at the same workloads was found to be rather unreliable. Overall, the use of RPE as an indicator of exercise intensity instead of HR appears to be unjustified by the results of this study. Therefore, practitioners who want a quick and efficient method of measuring exercise intensity should use HR instead of RPE for persons with multiple sclerosis.

Restricted access

David R. Dolbow, Richard S. Farley, Jwa K. Kim and Jennifer L. Caputo

The purpose of this study was to examine the cardiovascular responses to water treadmill walking at 2.0 mph (3.2 km/hr), 2.5 mph (4.0 km/hr), and 3.0 mph (4.8 km/hr) in older adults. Responses to water treadmill walking in 92 °F (33 °C) water were compared with responses to land treadmill walking at 70 °F (21 °C) ambient temperature. After an accommodation period, participants performed 5-min bouts of walking at each speed on 2 occasions. Oxygen consumption (VO2), heart rate (HR), systolic blood pressure (SBP), and rating of perceived exertion (RPE) were significantly higher during therapeutic water treadmill walking than during land treadmill walking. Furthermore, VO2, HR, and RPE measures significantly increased with each speed increase during both land and water treadmill walking. SBP significantly increased with each speed during water treadmill walking but not land treadmill walking. Thus, it is imperative to monitor HR and blood pressure for safety during this mode of activity for older adults.

Restricted access

Katrina Taylor, Jeffrey Seegmiller and Chantal A. Vella

Purpose:

To determine whether a decremental protocol could elicit a higher maximal oxygen consumption (VO2max) than an incremental protocol in trained participants. A secondary aim was to examine whether cardiac-output (Q) and stroke-volume (SV) responses differed between decremental and incremental protocols in this sample.

Methods:

Nineteen runners/triathletes were randomized to either the decremental or incremental group. All participants completed an initial incremental VO2max test on a treadmill, followed by a verification phase. The incremental group completed 2 further incremental tests. The decremental group completed a second VO2max test using the decremental protocol, based on their verification phase. The decremental group then completed a final incremental test. During each test, VO2, ventilation, and heart rate were measured, and cardiac variables were estimated with thoracic bioimpedance. Repeated-measures analysis of variance was conducted with an alpha level set at .05.

Results:

There were no significant main effects for group (P = .37) or interaction (P = .10) over time (P = .45). VO2max was similar between the incremental (57.29 ± 8.94 mL · kg–1 · min–1) and decremental (60.82 ± 8.49 mL · kg–1 · min–1) groups over time. Furthermore, Q and SV were similar between the incremental (Q 22.72 ± 5.85 L/min, SV 119.64 ± 33.02 mL/beat) and decremental groups (Q 20.36 ± 4.59 L/min, SV 109.03 ± 24.27 mL/beat) across all 3 trials.

Conclusions:

The findings suggest that the decremental protocol does not elicit higher VO2max than an incremental protocol but may be used as an alternative protocol to measure VO2max in runners and triathletes.