Search Results

You are looking at 1 - 10 of 695 items for :

  • "oxygen consumption" x
  • Refine by Access: All Content x
Clear All
Restricted access

David C. Nieman, Melanie D. Austin, Shannon M. Chilcote, and Laura Benezra

The purpose of this study was to assess the validity and reliability of the MedGem™ device to measure resting metabolic rate (RMR) in children. Subjects included 59 children (29 boys, 30 girls; mean age, 11.0 ± 0.2 y). Subjects were given 4 RMR tests during 1 test session, cconsisting of 2 Douglas bag and 2 MedGem tests, in random counterbalanced order. No significant differences were found between Douglas bag and MedGem systems for oxygen consumption (209 ± 5 and 213 ± 5 mL/min, respectively, P = 0.106, r = 0.911, mean ± standard deviation absolute difference 3.72 ± 17.40 mL/min) or RMR (1460 ± 39 and 1477 ± 35 kcal/d, P = 0.286, r = 0.909, mean ± standard deviation absolute difference 17.4 ± 124 kcal/d). Standard error of estimates for oxygen consumption and RMR were 17.4 mL/min and 124 kcal/d, respectively. In conclusion, these data indicate that the MedGem is a reliable and valid system for measuring oxygen consumption and RMR in children.

Restricted access

Antonio Paoli, Giuseppe Marcolin, Fabio Zonin, Marco Neri, Andrea Sivieri, and Quirico F. Pacelli

Exercise and nutrition are often used in combination to lose body fat and reduce weight. In this respect, exercise programs are as important as correct nutrition. Several issues are still controversial in this field, and among them there are contrasting reports on whether training in a fasting condition can enhance weight loss by stimulating lipolytic activity. The authors’ purpose was to verify differences in fat metabolism during training in fasting or feeding conditions. They compared the effect on oxygen consumption (VO2) and substrate utilization, estimated by the respiratory-exchange ratio (RER), in 8 healthy young men who performed the same moderate-intensity training session (36 min of cardiovascular training on treadmill at 65% maximum heart rate) in the morning in 2 tests in random sequence: FST test (fasting condition) without any food intake or FED test (feeding condition) after breakfast. In both cases, the same total amount and quality of food was assumed in the 24 hr after the training session. The breakfast, per se, increased both VO2 and RER significantly (4.21 vs. 3.74 and 0.96 vs. 0.84, respectively). Twelve hours after the training session, VO2 was still higher in the FED test, whereas RER was significantly lower in the FED test, indicating greater lipid utilization. The difference was still significant 24 hr after exercise. The authors conclude that when moderate endurance exercise is done to lose body fat, fasting before exercise does not enhance lipid utilization; rather, physical activity after a light meal is advisable.

Restricted access

Joffrey Bardin, Hugo Maciejewski, Allison Diry, Claire Thomas, and Sébastien Ratel

, although some comparative pediatric data do exist ( 18 ). From a cardiorespiratory perspective, some studies have reported a faster recovery of oxygen consumption ( V ˙ O 2 ) in prepubertal boys compared with men after high-intensity exercise ( 8 , 15 , 21 , 40 ). For instance, using biexponential modeling

Restricted access

James R. Mckee, Bradley A. Wall, and Jeremiah J. Peiffer

. However, for aerobic adaptation (ie, increases in cardiac output and maximal oxygen consumption [ V ˙ O 2 max ]), the total time an individual spends at or near their V ˙ O 2 max is an important consideration. 5 , 6 Many studies have examined the influence of interval structure on the time spent at or

Restricted access

Sebastian Sitko, Rafel Cirer-Sastre, Francisco Corbi, and Isaac López-Laval

In recent years, multiple performance factors have been identified in road cycling. 1 Among the physiological determinants of performance, maximal oxygen consumption (VO 2 max) adjusted to body mass can be highlighted as a key parameter of cardiorespiratory fitness. 2 Normally, gas exchange

Restricted access

Kevin E. Miller, Timothy R. Kempf, Brian C. Rider, and Scott A. Conger

Maximal oxygen consumption ( V ˙ O 2 max ) plays an integral role in health and wellness. The assessment of V ˙ O 2 max can be used to prescribe exercise intensity, evaluate the progress of an exercise program, and evaluate endurance performance potential ( American College of Sports Medicine

Restricted access

Christopher R.J. Fennell and James G. Hopker

reflects the ratio of oxygen (O 2 ) delivery to the working muscle and muscle oxygen uptake in the capillary beds. 17 The recovery of muscle oxygen consumption ( m V ˙ O 2 ) considers the condition of the exercising muscle, as measurements are derived directly from the muscle body. It has been suggested

Restricted access

Roland van den Tillaar, Erna von Heimburg, and Guro Strøm Solli

Maximal oxygen consumption (VO 2 max) is defined as the highest rate at which oxygen can be taken up and utilized by the body during intensive exercise. 1 The VO 2 max test is frequently used as a measure of the cardiorespiratory fitness level of an individual or as a physiological marker for

Restricted access

Jan Sommer Jeppesen, Jeppe F. Vigh-Larsen, Mikkel S. Oxfeldt, Niklas M. Laustsen, Magni Mohr, Jens Bangsbo, and Morten Hostrup

-intensity intermittent exercise performance, sprint, and agility performance conducted on-ice as well as maximum oxygen consumption ( V ˙ O 2 max ), muscle strength, rate of force development, and body composition in youth national team ice hockey players. We hypothesized that 4 weeks of SET would enhance high

Restricted access

Darlene A. Sedlock, Man-Gyoon Lee, Michael G. Flynn, Kyung-Shin Park, and Gary H. Kamimori

Literature examining the effects of aerobic exercise training on excess postexercise oxygen consumption (EPOC) is sparse. In this study, 9 male participants (19–32 yr) trained (EX) for 12 wk, and 10 in a control group (CON) maintained normal activity. VO2max, rectal temperature (Tre), epinephrine, norepinephrine, free fatty acids (FFA), insulin, glucose, blood lactate (BLA), and EPOC were measured before (PRE) and after (POST) the intervention. EPOC at PRE was measured for 120 min after 30 min of treadmill running at 70% VO2max. EX completed 2 EPOC trials at POST, i.e., at the same absolute (ABS) and relative (REL) intensity; 1 EPOC test for CON served as both the ABS and REL trial because no significant change in VO2max was noted. During the ABS trial, total EPOC decreased significantly (p < .01) from PRE (39.4 ± 3.6 kcal) to POST (31.7 ± 2.2 kcal). Tre, epinephrine, insulin, glucose, and BLA at end-exercise or during recovery were significantly lower and FFA significantly higher after training. Training did not significantly affect EPOC during the REL trial; however, epinephrine was significantly lower, and norepinephrine and FFA, significantly higher, at endexercise after training. Results indicate that EPOC varies as a function of relative rather than absolute metabolic stress and that training improves the efficiency of metabolic regulation during recovery from exercise. Mechanisms for the decreased magnitude of EPOC in the ABS trial include decreases in BLA, Tre, and perhaps epinephrine-mediated hepatic glucose production and insulin-mediated glucose uptake.