Search Results

You are looking at 1 - 2 of 2 items for :

  • "post-exercise drinks" x
Clear All
Restricted access

Ulrika Andersson-Hall, Stefan Pettersson, Fredrik Edin, Anders Pedersen, Daniel Malmodin and Klavs Madsen

Purpose: This study investigated how postexercise intake of placebo (PLA), protein (PRO), or carbohydrate (CHO) affected fat oxidation (FO) and metabolic parameters during recovery and subsequent exercise. Methods: In a cross-over design, 12 moderately trained women (VO2max 45 ± 6 ml·min−1·kg−1) performed three days of testing. A 23-min control (CON) incremental FO bike test (30–80% VO2max) was followed by 60 min exercise at 75% VO2max. Immediately postexercise, subjects ingested PLA, 20 g PRO, or 40 g CHO followed by a second FO bike test 2 h later. Results: Maximal fat oxidation (MFO) and the intensity at which MFO occurs (Fatmax) increased at the second FO test compared to the first following all three postexercise drinks (MFO for CON = 0.28 ± 0.08, PLA = 0.57 ± 0.13, PRO = 0.52 ± 0.08, CHO = 0.44 ± 0.12 g fat·min−1; Fatmax for CON = 41 ± 7, PLA = 54 ± 4, PRO = 55 ± 6, CHO = 50 ± 8 %VO2max, p < 0.01 for all values compared to CON). Resting FO, MFO, and Fatmax were not significantly different between PLA and PRO, but lower for CHO. PRO and CHO increased insulin levels at 1 h postexercise, though both glucose and insulin were equal with PLA at 2 h postexercise. Increased postexercise ketone levels only occurred with PLA. Conclusion: Protein supplementation immediately postexercise did not affect the doubling in whole body fat oxidation seen during a subsequent exercise trial 2 h later. Neither did it affect resting fat oxidation during the postexercise period despite increased insulin levels and attenuated ketosis. Carbohydrate intake dampened the increase in fat oxidation during the second test, though a significant increase was still observed compared to the first test.

Restricted access

Ryan D. Andrews, David A. MacLean and Steven E. Riechman

Variability in protein consumption may influence muscle mass changes induced by resistance exercise training (RET). We sought to administer a post-exercise protein supplement and determine if daily protein intake variability affected variability in muscle mass gains. Men (N = 22) and women (N = 30) ranging in age from 60 to 69 y participated in a 12-wk RET program. At each RET session, participants consumed a post-exercise drink (0.4 g/kg lean mass protein). RET resulted in significant increases in lean mass (1.1 ±1.5 kg), similar between sexes (P > 0.05). Variability in mean daily protein intake was not associated with change in lean mass (r < 0.10, P > 0.05). The group with the highest protein intake (1.35 g · kg−1 · d−1, n = 8) had similar (P > 0.05) changes in lean mass as the group with the lowest daily protein intake (0.72 g · kg−1 · d−1, n = 9). These data suggest that variability in total daily protein intake does not affect variability in lean mass gains with RET in the context of post-exercise protein supplementation.