Search Results

You are looking at 1 - 10 of 549 items for :

  • "power output" x
Clear All
Restricted access

Lotte L. Lintmeijer, A.J. “Knoek” van Soest, Freek S. Robbers, Mathijs J. Hofmijster and Peter J. Beek

prescribed levels of training intensity. From a biophysical perspective, average mechanical power output (hereafter called “power output”) over one or more stroke cycles constitutes a suitable measure to control rowers’ compliance with training intensity as it is (1) strongly related to a rower’s rate of

Restricted access

Owen Jeffries, Mark Waldron, Stephen D. Patterson and Brook Galna

Pacing refers to an athlete’s distribution of work or energy across an event. 1 , 2 Athletes vary their physical output (ie, mechanical power output) to accommodate physiological or psychological constraints, for strategic racing purposes, or due to changing environmental factors. 2 , 3

Restricted access

Irineu Loturco, Timothy Suchomel, Chris Bishop, Ronaldo Kobal, Lucas A. Pereira and Michael McGuigan

considers at the same time the force and velocity applied to the barbell, thus optimizing the power production in this external implement. This load is usually determined in a progressive load test, performed until a decrease in subject’s power output is observed. 16 , 17 Nonetheless, it appears that these

Restricted access

Jeremiah J. Peiffer, Chris R. Abbiss, Eric C. Haakonssen and Paolo Menaspà

from male cyclists to their female counterparts. For instance, lower whole-body muscle mass 16 has been observed in female compared with male athletes, which can influence peak power output, 17 whereas a slower rate of force production during a maximal sprint, irrespective of muscle mass, has been

Restricted access

Seiichiro Takei, Kuniaki Hirayama and Junichi Okada

strength and conditioning settings. 2 , 3 Many studies have shown the effectiveness of the use of optimal load to generate the highest power output. 4 , 5 The reported optimal load for HPC varies among studies, ranging from 65% to 80% of 1-repetition maximum (1RM). 6 – 10 This inconsistency may derive

Restricted access

Karin Roeleveld, Eric Lute, Dirkjan Veeger, Luc van der Woude and Tom Gwinn

To assess power output, force application, and kinematics of wheelchair propulsion in peak exercise, nine wheelchair athletes with medical lesion levels of T8 or lower performed a 30-s sprint test on a stationary wheelchair ergometer. Mean power output, calculated for the right wheel only, was 59.4 ± 8.5 W. The ratio between effective force and total propulsive force was 60 ± 6%. A negative torque around the hand and a not tangentially directed total force accounted for this low effectiveness. Since the subject group was highly trained, their technique was considered to be optimal for the given circumstances. Therefore, athletes who want to improve power output by increasing effectiveness should keep in mind the existence of a nontangential propulsive force and a braking torque applied by the hands onto the hand rim surface. It is likely that both aspects will be influenced by the geometry of the wheelchair, for example, hand rim dimension or seat position.

Restricted access

Cyril Granier, Chris R. Abbiss, Anaël Aubry, Yvon Vauchez, Sylvain Dorel, Christophe Hausswirth and Yann Le Meur

these competitions, HR was 177 (6) beats·min −1 and power output (PO) averaged 246 (12) W (3.6 [0.2] W·kg −1 ), but was highly variable (coefficient of variation of 69%) and characterized by regular repeated high-intensity bursts. Although these HR and PO data provide a general understanding of

Restricted access

Dennis van Erck, Eric J. Wenker, Koen Levels, Carl Foster, Jos J. de Koning and Dionne A. Noordhof

the maximal oxygen uptake [ V ˙ O 2 max] and V ˙ O 2 at the lactate threshold), performance O 2 deficit, and gross mechanical efficiency (GE). GE, defined as the percentage of metabolic power input, that is, converted into mechanical power output (PO), is considered the most valid definition of

Restricted access

Harsh H. Buddhadev and Philip E. Martin

studies have examined the effects of external power output and cadence on aerobic demand or energy expenditure ( Belli & Hintzy, 2002 ; Bigland-Ritchie & Woods, 1974 ; Chavarren & Calbet, 1999 ; Gaesser & Brooks, 1975 ; Marsh & Martin, 1993 ; Samozino, Horvais, & Hintzy, 2006 ). Influences of power

Restricted access

David Michael Morris and Rebecca Susan Shafer

The authors sought to compare power output at blood lactate threshold, maximal lactate steady state, and pH threshold with the average power output during a simulated 20-km time trial assessed during cycle ergometry. Participants (N = 13) were trained male and female cyclists and triathletes, all permanent residents at moderate altitude (1,525–2,225 m). Testing was performed at 1,525 or 1,860 m altitude. Power outputs were determined during a simulated 20-km time trial (PTT), at blood pH threshold (PpHT), at maximal lactate steady state (PMLSS), and at blood lactate threshold determined by 2 methods: the highest power output that did not result in consecutive and continued increases in blood lactate concentrations from exercising baseline (PLT) and the highest power output that did not result in consecutive and continued increases of ≥1 mmol/L in blood lactate concentrations from exercising baseline (PLT1). PLT, PLT1, and PMLSS were all significantly lower than PpHT (p < .05) and PTT (p < .05). No significant difference was observed between PpHT and PTT (p > .05). Significant correlations were observed between each of the metabolic variables, PLT, PLT1, PMLSS, and PpHT, compared with PTT (p < .05). The authors conclude that, of the 4 metabolic variables, only PpHT offered an accurate reflection of PTT.