Search Results

You are looking at 1 - 10 of 267 items for :

  • "preexercise" x
Clear All
Restricted access

Craig Pickering and Jozo Grgic

, 2006 ; Tunnicliffe et al., 2008 ), although it is not necessarily clear whether they consume coffee as a deliberate preexercise ergogenic aid or via social habits. Although coffee contains caffeine, it is also composed of a variety of other components, such as chlorogenic acids ( de Paulis et

Restricted access

Rachel B. Parks, Hector F. Angus, Douglas S. King and Rick L. Sharp

The metabolic and performance benefits of consuming carbohydrate during and after endurance exercise have been recognized for decades ( Coggan & Coyle, 1987 ; Ivy et al., 1988 ). In contrast, preexercise carbohydrate ingestion trials have demonstrated variable performance outcomes and metabolic

Restricted access

John G. Seifert, Greg L. Paul, Dennis E. Eddy and Robert Murray

The effects of preexercise hyperinsulinemia on exercising plasma glucose, plasma insulin, and metabolic responses were assessed during 50 min cycling at 62% VO2max. Subjects were fed a 6% sucrose/glucose solution (LCHO) or a 20% maltodextrin/glucose solution (HCHO) to induce changes in plasma insulin. During exercise, subjects assessed perceived nauseousness and lightheadedness. By the start of exercise, plasma glucose and plasma insulin had increased. In the LCHO trial, plasma glucose values significantly decreased below the baseline value at 30 min of exercise. However, by 40 min, exercise plasma glucose and insulin values were similar to the baseline value. Exercise plasma glucose and insulin did not differ from baseline values in the HCHO trial. Ingestion of LCHO or HCHO was not associated with nausea or lightheadedness. It was concluded that the hyperinsulinemia induced by preexercise feediigs of CHO did not result in frank hypoglycemia or adversely affect sensory or physiological responses during 50 min of moderate-intensity cycling.

Restricted access

Joel B. Mitchell, Paul C. DiLauro, Francis X. Pizza and Daniel L. Cavender

The purpose of this study was to determine the effect of a high vs. a low preexercise carbohydrate (CHO) diet on performance during multiple sets of resistance exercise. Eleven resistance-trained males performed cycle ergometry to deplete quadriceps muscle glycogen stores, followed by 48 hr of a high (HICHO) or a low (LOCHO) CHO diet. Subjects then performed five sets each of squats, leg presses, and knee extensions (resistance = 15 RM) to failure. Blood samples were taken before and during exercise for determination of glucose and lactate (LA). No differences in performance (repetitions X weight lifted) were observed (HICHO = 15,975±1,381 and LOCHO = 15,723±1,231 kg). Blood glucose was significantly higher after exercise for HICHO compared to LOCHO (HICHO = 4.8 ± 0.2 vs. LOCHO = 3.9 ± 0.2 mmol·L−1). No differences in LA accumulation were observed. The data indicated that preexercise CHO status did not affect resistance exercise performance. Further, the differences in blood glucose and the similarity in LA responses suggest that glycolysis was maintained in the LOCHO condition, and there may have been an increased reliance on blood glucose when preexercise CHO status was low.

Restricted access

Kevin R. Short, Melinda Sheffield-Moore and David L. Costill

This investigation was undertaken to determine whether consuming several small feedings of preexercise carbohydrate (CHO), rather than a single bolus, would affect blood glucose and insulin responses during rest and exercise. Eight trained cyclists ingested 22.5,45, or 75 total g maltodextrin and dextrose dissolved in 473 ml of water or an equal volume of placebo (PL). Drinks were divided into four portions and consumed at 15-min intervals in the hour before a 120-min ride at 66% VO2max. Serum glucose values were elevated by the CHO feedings at rest and fell significantly below baseline and PL at 15 min of exercise. However, glucose concentrations were similar in each of the CHO trials. Insulin concentrations also increased rapidly during rest, then fell sharply at the onset of exercise. The findings demonstrate that CHO consumed within an hour before exercise, even when taken in several small feedings, can produce transient hypoglycemia near the onset of exercise. Additionally, the magnitude of the response appears to be unrelated to either the amount of CHO ingested or the insulin response.

Restricted access

Luana T. Rossato, Camila T.M. Fernandes, Públio F. Vieira, Flávia M.S. de Branco, Paula C. Nahas, Guilherme M. Puga and Erick P. de Oliveira

preexercise). The mouth rinse was performed before each maximal sprint, and it was concluded that CHO mouth rinse had no positive effect on physical and cognitive performance. 13 All these studies 13 – 16 were performed after overnight fasting, such as the present study; and although the exercise protocols

Restricted access

June C. Alberici, Peter A. Farrell, Penny M. Kris-Etherton and Carol A. Shively

This study examined the effects of preexercise candy bar ingestion on glycemic response, substrate utilization, and performance ie 8 trained male cyclists. The cyclists randomly ingested oee large milk chocolate bar (1CB), two large milk chocolate bars (2CB), or a placebo (P) 30 min prior to a 90-min cycle ride at 70% VO2max followed by a 33-W increase every 2 min until exhaustion (~10 min). Glucose decreased after 15 min of exercise but returned to preexercise values by 30 min of exercise. Glucose concentration for 2CB was significantly higher than for P and 1CB at exhaustion, Insulin concentration increased in response to ICB and 2CB and returned to preexercise values within 15 min of exercise. No significant differences were noted for free fatty acid (FFA) concentrations, Jactate concentrations, respiratory exchange ratio, total carbohydrate oxidation, or estimated fat and carbohydrate oxidation rates. Time to exhaustion was similar among the groups. The results suggest that the transient lowering of blood glucose observed with preexercise milk chocolate bar ingestion 30 min prior to exercise may not cause major metabolic perturbations that impair athletic performance in trained athletes performing moderately intense cycle exercise.

Restricted access

Heidi K. Byrne, Yeonsoo Kim, Steven R. Hertzler, Celia A. Watt and Craig O. Mattern

Purpose:

To compare serum glucose and insulin responses to 3 preexercise snacks before, during, and after exercise in individuals with impaired fasting glucose (IFG) and healthy (H) men. In addition, in an IFG population, the authors sought to determine whether a natural fruit snack (i.e., raisins) yields more desirable glucose and insulin concentrations than an energy bar or a glucose solution.

Methods:

The IFG (n = 11, age = 54.5 ± 1.3 yr, fasting blood glucose [BG] = 6.3 ± 0.1 mmol/L) and H groups (n = 9, age = 48.0 ± 3.1 yr, fasting BG = 4.9 ± 0.1 mmol/L) cycled at 50% of VO2peak for 45 min on 4 occasions after consuming water or 50 g of carbohydrate from raisins (R), an energy bar (EB), or a glucose beverage (GLU). Metabolic markers were measured before, during, and after exercise.

Results:

In all nutritional conditions, glucose concentrations of the IFG group were consistently higher than in the H group. Differences between IFG and H groups in insulin concentrations were sporadic and isolated. In the IFG group, preexercise glucose concentration was lower in the R condition than in GLU. Ten and 20 min into exercise, glucose concentrations in the R and EB conditions were lower than in GLU. Insulin concentrations were lower in the R condition than in EB and GLU immediately before exercise and at Minute 10 but at 20 min R remained lower than only GLU.

Conclusion:

Glucose concentrations were higher in the IFG group regardless of preexercise snack. Compared with the glucose solution, raisins lowered both the postprandial glycemic and insulinemic responses, whereas the energy bar reduced glycemia but not insulinemia.

Restricted access

Nicolette C. Bishop, Neil P. Walsh, Donna L. Haines, Emily E. Richards and Michael Gleeson

Ingesting carbohydrate (CHO) beverages during heavy exercise is associated with smaller shifts in numbers of circulating neutrophils and attenuated changes in neutrophil functional responses. The influence of dietary CHO availability on these responses has not been determined. Therefore, the present study investigated the influence of pre-exercise CHO status on circulating neutrophil and lipopolysaccharide (LPS)-stimulated neutrophil degranulation responses to prolonged cycling. Twelve trained male cyclists performed a glycogen-lowering bout of cycling and were randomly assigned to follow a diet ensuring either greater than 70% (HIGH) or less than 10% (LOW) of daily energy intake from CHO for the next 3 days. On day 4, subjects performed an exercise test that comprised cycling for 1 hour at 60% Wmax immediately followed by a time-trial (TT) ensuring an energy expenditure equivalent to cycling for 30 min at 80% Wmax. Subjects repeated the protocol after 7 days, this time following the second diet. The order of the trials was counterbalanced. At TT completion, the HIGH compared with the LOW trial was associated with higher plasma glucose concentration, lower plasma cortisol concentration, and lower circulating neutrophil count. LPS-stimulated neutrophil degranulation per cell fell similarly on both trials. These findings suggest that pre-exercise CHO status influences neutrophil trafficking but not function in response to prolonged cycling.

Restricted access

Nicolette C. Bishop, Neil P. Walsh, Donna L. Haines, Emily E. Richards and Michael Gleeson

Ingesting carbohydrate (CHO) beverages during heavy exercise is associated with smaller changes in the plasma concentrations of several cytokines. The influence of dietary CHO availability on these responses has not been determined. Therefore, the present study investigated the influence of pre-exercise CHO status on plasma interleukin (IL)-6, IL-10, and IL-1 receptor antagonist (IL-1ra) responses to prolonged cycling. Seven trained male cyclists performed a glycogen-lowering bout of cycling and were randomly assigned to follow a diet ensuring either greater than 70% (HIGH) or less than 10% (LOW) of daily energy intake from CHO for the next 3 days. On day 4 subjects performed an exercise test that comprised cycling for 1 hour at 60% Wmax immediately followed by a time-trial (TT) ensuring an energy expenditure equivalent to cycling for 30 min at 80% Wmax. Subjects repeated the protocol after 7 days, this time following the second diet. The order of the trials was counterbalanced. At 1 and 2 hours post-TT, plasma concentrations of IL-6 and IL-10 were 2-fold greater on the LOW trial than on the HIGH trial, and peak plasma concentrations of TL-1ra were 9-fold greater on the LOW trial than on the HIGH trial. These findings suggest that pre-exercise CHO status can influence the plasma cytokine response to prolonged cycling.