Search Results

You are looking at 1 - 10 of 100 items for :

  • "protein supplement" x
  • Refine by Access: All Content x
Clear All
Restricted access

Bruno Ruiz Brandão da Costa, Rafaela Rocha Roiffé, and Márcia Nogueira da Silva de la Cruz

is estimated to be worth twice this much in 2027 ( Grand View Research, 2019 , 2020 ). In this sense, one of the most used products is protein supplements ( Knapik et al., 2016 ; Sánchez-Oliver et al., 2018 ). The high boost in production, combined with poor manufacturing practices and the absence

Restricted access

Alistair R. Mallard, Rebecca T. McLay-Cooke, and Nancy J. Rehrer

Effects of protein versus mixed macronutrient supplementation on total energy intake (TEI) and protein intake during an ad libitum diet were examined. Trained males undertook two, 2-week dietary interventions which were randomized, double blinded, and separated by 2 weeks. These were high-protein supplementation (HP: 1034.5 kJ energy, 29.6 g protein, 8.7 g fat and 12.3 g CHO) and standard meal supplementation (SM: 1039 kJ energy, 9.9 g protein, 9.5 g fat, and 29.4 g CHO) consumed daily following a week of baseline measures. Eighteen participants finished both interventions and one only completed HP. TEI (mean ± SD) was not different between baseline (11148 ± 3347 kJ) and HP (10705 ± 3143 kJ) nor between baseline and SM (12381 ± 3877 kJ), however, TEI was greater with SM than HP (923 ± 4015 kJ p = .043). Protein intake (%TEI) was greater with HP (22.4 ±6.2%) than baseline (19.4 ± 5.4%; p = .008) but not SM (20.0 ± 5.0%). No differences in absolute daily protein intake were found. Absolute CHO intake was greater with SM than HP (52.0 ± 89.5 g, p = .006). No differences in fat intake were found. Body mass did not change between baseline (82.7 ± 11.2 kg) and either HP (83.1 ± 11.7 kg) or SM (82.9 ± 11.0 kg). Protein supplementation increases the relative proportion of protein in the diet, but doesn’t increase the absolute amount of total protein or energy consumed. Thus some compensation by a reduction in other foods occurs. This is in contrast to a mixed nutrient supplement, which does not alter the proportion of protein consumed but does increase TEI.

Restricted access

Michael J. Ormsbee, Brandon D. Willingham, Tasha Marchant, Teresa L. Binkley, Bonny L. Specker, and Matthew D. Vukovich

<1.3 g·kg −1 ·day −1 ( Cermak et al., 2012 ; Morton et al., 2017 ). When individuals who are unaccustomed to resistance exercise begin a new training program, the influence of protein supplementation may augment their physiological responses, especially over the short term ( Gontzea et al., 1975

Restricted access

Jay R. Hoffman, Nicholas A. Ratamess, Christopher P. Tranchina, Stefanie L. Rashti, Jie Kang, and Avery D. Faigenbaum

The effect of 10 wk of protein-supplement timing on strength, power, and body composition was examined in 33 resistance-trained men. Participants were randomly assigned to a protein supplement either provided in the morning and evening (n = 13) or provided immediately before and immediately after workouts (n = 13). In addition, 7 participants agreed to serve as a control group and did not use any protein or other nutritional supplement. During each testing session participants were assessed for strength (one-repetition-maximum [1RM] bench press and squat), power (5 repetitions performed at 80% of 1RM in both the bench press and the squat), and body composition. A significant main effect for all 3 groups in strength improvement was seen in 1RM bench press (120.6 ± 20.5 kg vs. 125.4 ± 16.7 at Week 0 and Week 10 testing, respectively) and 1RM squat (154.5 ± 28.4 kg vs. 169.0 ± 25.5 at Week 0 and Week 10 testing, respectively). However, no significant between-groups interactions were seen in 1RM squat or 1RM bench press. Significant main effects were also seen in both upper and lower body peak and mean power, but no significant differences were seen between groups. No changes in body mass or percent body fat were seen in any of the groups. Results indicate that the time of protein-supplement ingestion in resistance-trained athletes during a 10-wk training program does not provide any added benefit to strength, power, or body-composition changes.

Restricted access

John L. Ivy, Peter T. Res, Robert C. Sprague, and Matthew O. Widzer

Increasing the plasma glucose and insulin concentrations during prolonged variable intensity exercise by supplementing with carbohydrate has been found to spare muscle glycogen and increase aerobic endurance. Furthermore, the addition of protein to a carbohydrate supplement will enhance the insulin response of a carbohydrate supplement. The purpose of the present study was to compare the effects of a carbohydrate and a carbohydrate-protein supplement on aerobic endurance performance. Nine trained cyclists exercised on 3 separate occasions at intensities that varied between 45% and 75% VO2max for 3 h and then at 85% VO2max until fatigued. Supplements (200 ml) were provided every 20 min and consisted of placebo, a 7.75% carbohydrate solution, and a 7.75% carbohydrate / 1.94% protein solution. Treatments were administered using a double-blind randomized design. Carbohydrate supplementation significantly increased time to exhaustion (carbohydrate 19.7 ± 4.6 min vs. placebo 12.7 ± 3.1 min), while the addition of protein enhanced the effect of the carbohydrate supplement (carbohydrate-protein 26.9 ± 4.5 min, p < .05). Blood glucose and plasma insulin levels were elevated above placebo during carbohydrate and carbohydrate-protein supplementation, but no differences were found between the carbohydrate and carbohydrate-protein treatments. In summary, we found that the addition of protein to a carbohydrate supplement enhanced aerobic endurance performance above that which occurred with carbohydrate alone, but the reason for this improvement in performance was not evident.

Restricted access

Matthew D. Vukovich, Rick L. Sharp, Douglas S. King, and Kellie Kershishnik

Eleven subjects performed a graded exercise test after 1 week of protein supplementation (PRO) or glucose polymer placebo (CON), randomly assigned in a double blind fashion. The exercise consisted of 3-min graded exercise bouts separated by 10 min of active recovery at zero pedal resistance. Subjects then performed a 30-sec Wingate test (WIN) to assess performance during supramaximal exercise. Blood samples were obtained in the last 15 sec of each exercise and recovery period. PRO resulted in a decrease in blood lactate following 120% VO2max and WIN, an increase in blood alanine at all time points, and lower postexercise muscle lactate and glycogen. Resting muscle GPT activity was 47% higher during the PRO trial. Mean power output during the WIN did not differ between PRO and CON. The WIN fatigue index was not significantly different between PRO and CON. The increased alanine may reflect increased transamination of pyruvate, thereby reducing the accumulation of lactate, which in turn had a marginal effect on performance during supramaximal exercise.

Restricted access

Darren G. Candow, Natalie C. Burke, T. Smith-Palmer, and Darren G. Burke

The purpose was to compare changes in lean tissue mass, strength, and myof-brillar protein catabolism resulting from combining whey protein or soy protein with resistance training. Twenty-seven untrained healthy subjects (18 female, 9 male) age 18 to 35 y were randomly assigned (double blind) to supplement with whey protein (W; 1.2 g/kg body mass whey protein + 0.3 g/kg body mass sucrose power, N = 9: 6 female, 3 male), soy protein (S; 1.2 g/kg body mass soy protein + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) or placebo (P; 1.2 g/kg body mass maltodextrine + 0.3 g/kg body mass sucrose powder, N = 9: 6 female, 3 male) for 6 wk. Before and after training, measurements were taken for lean tissue mass (dual energy X-ray absorptiometry), strength (1-RM for bench press and hack squat), and an indicator of myofbrillar protein catabolism (urinary 3-methylhistidine). Results showed that protein supplementation during resistance training, independent of source, increased lean tissue mass and strength over isocaloric placebo and resistance training (P < 0.05). We conclude that young adults who supplement with protein during a structured resistance training program experience minimal beneficial effects in lean tissue mass and strength.

Restricted access

Paulo Sugihara Junior, Alex S. Ribeiro, Hellen C.G. Nabuco, Rodrigo R. Fernandes, Crisieli M. Tomeleri, Paolo M. Cunha, Danielle Venturini, Décio S. Barbosa, Brad J. Schoenfeld, and Edilson S. Cyrino

evaluate the additive effect of protein supplementation on RT-induced adaptations ( Finger et al., 2015 ; Miller et al., 2014 ; Morton et al., 2018 ; Naclerio & Larumbe-Zabala, 2016 ; Pasiakos et al., 2015 ; Thomas, Quinn, et al., 2016 ). However, there is substantially less information on the topic

Restricted access

Mads S. Larsen, Dagmar Clausen, Astrid Ank Jørgensen, Ulla R. Mikkelsen, and Mette Hansen

strength when protein, rather than a noncaloric placebo, was ingested before sleep ( Snijders et al., 2015 ). Thus, the beneficial effects of presleep protein supplementation on muscle protein synthesis rates seem well substantiated. However, the potential impact of presleep protein feeding may reach

Restricted access

Column-editor : Susan Kleiner