Search Results

You are looking at 1 - 10 of 24 items for :

  • "recovery methods" x
Clear All
Restricted access

Jose Morales, Emerson Franchini, Xavier Garcia-Massó, Mónica Solana-Tramunt, Bernat Buscà and Luis-Millán González

Purpose:

To adapt the work endurance recovery (WER) method based on randori maximal time to exhaustion (RMTE) for combat situations in judo.

Methods:

Eleven international-standard judo athletes (7 men and 4 women; mean age 20.73 ± 2.49 y, height 1.72 ± 0.11 m, body mass 67.36 ± 10.67 kg) were recruited to take part in the study. All participants performed a maximal incremental test (MIT), a Wingate test (WIN), a Special Judo Fitness Test (SJFT), and 2 RMTE tests. They then took part in a session at an international training camp in Barcelona, Spain, in which 4 methods of load quantification were implemented: the WER method, the Stagno method, the Lucia method, and the session rating of perceived exertion (RPEsession).

Results:

RMTE demonstrated a very high test–retest reliability (intraclass correlation coefficient = .91), and correlations of the performance tests ranged from moderate to high: RMTE and MIT (r = .66), RMTE and WIN variables (r = .38–.53), RMTE and SJFT variables (r = .74–.77). The correlation between the WER method, which considers time to exhaustion, and the other systems for quantifying training load was high: WER and RPEsession (r = .87), WER and Stagno (r = .77), WER and Lucia (r = .73). A comparative repeated-measures analysis of variance of the normalized values of the quantification did not yield statistically significant differences.

Conclusions:

The WER method using RMTE is highly adaptable to quantify randori judo sessions and enables one to plan a priori individualized training loads.

Restricted access

Daniel H. Serravite, Arlette Perry, Kevin A. Jacobs, Jose A. Adams, Kysha Harriell and Joseph F. Signorile

Purpose:

To examine the effects of whole-body periodic acceleration (pGz) on exercise-induced-muscle-damage (EIMD) -related symptoms induced by unaccustomed eccentric arm exercise.

Methods:

Seventeen active young men (23.4 ± 4.6 y) made 6 visits to the research facility over a 2-wk period. On day 1, subjects performed a 1-repetition-maximum (1RM) elbowflexion test and were randomly assigned to the pGz (n = 8) or control group (n = 9). Criterion measurements were taken on day 2, before and immediately after performance of the eccentric-exercise protocol (10 sets, 10 repetitions using 120% 1RM) and after the recovery period. During subsequent sessions (24, 48, 72, and 96 h) these data were collected before pGz or passive recovery. Measurements included isometric strength (maximal voluntary contraction [MVC]), blood markers (creatine kinase, myoglobin, IL-6, TNF-α, TBARS, PGF2α, protein carbonyls, uric acid, and nitrites), soreness, pain, circumference, and range of motion (ROM).

Results:

Significantly higher MVC values were seen for pGz throughout the recovery period. Within-group differences were seen in myoglobin, IL-6, IL-10, protein carbonyls, soreness, pain, circumference, and ROM showing small negative responses and rapid recovery for the pGz condition.

Conclusion:

Our results demonstrate that pGz can be an effective tool for the reduction of EIMD and may contribute to the training-adaptation cycle by speeding up the recovery of the body due to its performance-loss-lessening effect.

Restricted access

Neil Gibson, Callum Brownstein, Derek Ball and Craig Twist

Purpose:

To examine the physiological and perceptual responses of youth footballers to a repeated sprint protocol employing standardized and self-selected recovery.

Methods:

Eleven male participants (13.7 ± 1.1 years) performed a repeated sprint assessment comprising 10 × 30 m efforts. Employing a randomized cross-over design, repeated sprints were performed using 30 s and self-selected recovery periods. Heart rate was monitored continuously with ratings of perceived exertion (RPE) and lower body muscle power measured 2 min after the final sprint. The concentration of blood lactate was measured at 2, 5 and 7 min post sprinting. Magnitude of effects were reported using effect size (ES) statistics ± 90% confidence interval and percentage differences. Differences between trials were examined using paired student t tests (p < .05).

Results:

Self-selected recovery resulted in most likely shorter recovery times (57.7%; ES 1.55 ± 0.5; p < .01), a most likely increase in percentage decrement (65%; ES 0.36 ± 0.21; p = .12), very likely lower heart rate recovery (-58.9%; ES -1.10 ± 0.72; p = .05), and likely higher blood lactate concentration (p = .08–0.02). Differences in lower body power and RPE were unclear (p > .05).

Conclusion:

Self-selected recovery periods compromise repeated sprint performance.

Restricted access

Steven H. Doeven, Michel S. Brink, Wouter G.P. Frencken and Koen A.P.M. Lemmink

During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach and player perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery.

Purpose:

To determine match exertion and subsequent recovery and to investigate the extent to which the coach is able to estimate players’ match exertion and recovery.

Methods:

Rating of perceived exertion (RPE) and total quality of recovery (TQR) of 14 professional basketball players (age 26.7 ± 3.8 y, height 197.2 ± 9.1 cm, weight 100.3 ± 15.2 kg, body fat 10.3% ± 3.6%) were compared with observations of the coach. During an in-season phase of 15 matches within 6 wk, players gave RPEs after each match. TQR scores were filled out before the first training session after the match. The coach rated observed exertion (ROE) and recovery (TQ-OR) of the players.

Results:

RPE was lower than ROE (15.6 ± 2.3 and 16.1 ± 1.4; P = .029). Furthermore, TQR was lower than TQ-OR (12.7 ± 3.0 and 15.3 ± 1.3; P < .001). Correlations between coach- and player-perceived exertion and recovery were r = .25 and r = .21, respectively. For recovery within 1 d the correlation was r = .68, but for recovery after 1–2 d no association existed.

Conclusion:

Players perceive match exertion as hard to very hard and subsequent recovery reasonable. The coach overestimates match exertion and underestimates degree of recovery. Correspondence between coach and players is thus not optimal. This mismatch potentially leads to inadequate planning of training sessions and decreases in performance during fixture congestion in basketball.

Restricted access

Tiago Peçanha, Marcelle Paula-Ribeiro, Edson Campana-Rezende, Rhenan Bartels, João Carlos Bouzas Marins and Jorge Roberto Perrout de Lima

It has been shown that water intake (WI) improves postexercise parasympathetic recovery after moderateintensity exercise session. However, the potential cardiovascular benefit promoted by WI has not been investigated after high-intensity exercise.

Purpose:

To assess the effects of WI on post high-intensity parasympathetic recovery.

Methods:

Twelve recreationally active young men participated in the study (22 ± 1.4 years, 24.1 ± 1.6 kg.m−2). The experimental protocol consisted of two visits to the laboratory. Each visit consisted in the completion of a 30-min high-intensity [~80% of maximal heart rate (HR)] cycle ergometer aerobic session performing randomly the WI or control (CON, no water consumption) intervention at the end of the exercise. HR and RR intervals (RRi) were continuously recorded by a heart rate monitor before, during and after the exercise. Differences in HR recovery [e.g., absolute heart rate decrement after 1 min of recovery (HRR60s) and time-constant of the first order exponential fitting curve of the HRR (HRRτ)] and in postexercise vagalrelated heart rate variability (HRV) indexes (rMSSD30s, rMSSD, pNN50, SD1 and HF) were calculated and compared for WI and CON.

Results:

A similar HR recovery and an increased postexercise HRV [SD1 = 9.4 ± 5.9 vs. 6.0 ± 3.9 millisecond, HF(ln) = 3.6 ± 1.4 vs. 2.4 ± 1.3 millisecond2, for WI and CON, respectively; p < .05] was observed in WI compared with CON.

Conclusion:

The results suggest that WI accelerates the postexercise parasympathetic reactivation after high-intensity exercise. Such outcome reveals an important cardioprotective effect of WI.

Restricted access

Jan Kodejška, Jiří Baláš and Nick Draper

. Effects of four recovery methods on repeated maximal rock climbing performance . Med Sci Sports Exerc . 2009 ; 41 ( 6 ): 1303 – 1310 . PubMed ID: 19461534 doi:10.1249/MSS.0b013e318195107d 10.1249/MSS.0b013e318195107d 19461534 5. Baláš J , Chovan P , Martin AJ . Effect of hydrotherapy, active

Full access

Michael Kellmann, Maurizio Bertollo, Laurent Bosquet, Michel Brink, Aaron J. Coutts, Rob Duffield, Daniel Erlacher, Shona L. Halson, Anne Hecksteden, Jahan Heidari, K. Wolfgang Kallus, Romain Meeusen, Iñigo Mujika, Claudio Robazza, Sabrina Skorski, Ranel Venter and Jürgen Beckmann

educated regarding aspects such as sleep hygiene and potential positive effects of sleep extension. 40 Furthermore, a range of specific recovery methods are available and could be systematically incorporated into the athlete’s training program at various times to foster recovery on different levels

Restricted access

Jesús Seco-Calvo, Juan Mielgo-Ayuso, César Calvo-Lobo and Alfredo Córdova

and RPE measurements for a more comprehensive assessment of the effects of CWI on muscle recovery. Methods Study Design A prospective cohort study was carried out. A total of 28 volunteer professional male basketball players participated in the study. The study was designed in compliance with the

Restricted access

Berkiye Kirmizigil, Jeffry Roy Chauchat, Omer Yalciner, Gozde Iyigun, Ender Angin and Gul Baltaci

popular recovery method. 2 , 6 The Kinesio taping (KT) is a type of elastic taping which stretches up to 140% of its original length. 7 Many studies showed that KT would have beneficial effects on soreness by ameliorating muscle function, 6 inhibiting muscle activity, 4 increasing blood and lymph

Restricted access

Nicola Relph and Katie Small

take measurements within competition) had been used. Hence, athletic trainers should consider in-event measurement with a view to prescribe recovery strategies that incorporate this knowledge (i.e., balance and flexibility recovery methods) in competition. Acknowledgments The authors would like to