Search Results

You are looking at 1 - 10 of 16 items for :

  • "skiing technique" x
Clear All
Restricted access

Erik Trøen, Bjarne Rud, Øyvind Karlsson, Camilla Høivik Carlsen, Matthias Gilgien, Gøran Paulsen, Ola Kristoffer Tosterud and Thomas Losnegard

21545537 22. Smith G . Cross-country skiing: Technique, equipment and environmental factors affecting performance . In: Zatsiorsky VM , ed. Biomechanics in Sport: Performance Enhancement and Injury Prevention . Oxford, UK : Blackwell Science Ltd. ; 2000 : 247 – 270 . doi:10.1002/9780470693797 10

Restricted access

Martin D. Hoffman, Philip S. Clifford and Frank Bender

This investigation examined the adjustments made in cycle rate and length to velocity changes during roller skiing with the double pole (DP), kick double pole (KD), and VI skate (VS) techniques. Eight cross-country ski racers roller skied with each technique on a flat track at submaximal and maximal velocities while being videotaped from a lateral view. Increases in submaximal velocities were associated with increases in cycle rate and cycle length for KD and VS but only with increases in cycle rate for DP. Maximal sprint velocities were approximately 7% lower (p < .01) for KD than for DP and VS and were associated with increases (p < .01) in cycle rate for each technique combined with decreases (p < .01) in cycle length for DP and VS. The findings indicate that there are differences among techniques in the manner in which cycle rate and length are adjusted to change submaximal velocity, but each technique relies upon an increase in cycle rate to achieve maximal velocity.

Restricted access

Øyvind Sandbakk and Hans-Christer Holmberg

Cross-country (XC) skiing is one of the most demanding of endurance sports, involving protracted competitions on varying terrain employing a variety of skiing techniques that require upper- and/or lower-body work to different extents. Through more effective training and extensive improvements in equipment and track preparation, the speed of cross-country ski races has increased more than that of any other winter Olympic sport, and, in addition, new types of racing events have been introduced. To a certain extent this has altered the optimal physiological capacity required to win, and the training routines of successful skiers have evolved accordingly. The long-standing tradition of researchers working closely with XC-ski coaches and athletes to monitor progress, improve training, and refine skiing techniques has provided unique physiological insights revealing how these athletes are approaching the upper limits of human endurance. This review summarizes current scientific knowledge concerning the demands involved in elite XC skiing, as well as the physiological capacity and training routines of the best athletes.

Restricted access

Glenn M. Street and Robert W. Gregory

While the scientific literature has confirmed the importance of high maximal aerobic power to successful cross-country skiing performance, the same cannot be said of skiing technique or gliding characteristics of skis. The purpose of this study was to determine whether glide speed was related to Olympic race performance. Male competitors in the 50-km freestyle event were videotaped during the 1992 Winter Olympic Games. Glide speeds of the entire field were measured through a 20-m flat section at the bottom of a 150-m, 12° downhill. A significant correlation (r = -.73) was found between finish time and glide speed, showing that the more successful competitors tended to have faster glide speeds through this section of the course. A predictive model of glide speed suggested that the faster glide speeds were due primarily to differences in friction. There was little evidence to suggest that differences in air drag, body mass, or initial speed accounted for the major differences in glide speeds.

Restricted access

Matej Supej

An important question in alpine skiing is how to determine characteristics of well-performed ski turns, an issue that has become more crucial with the arrival of new carving skis. This article introduces a new method for estimating the quality of skiing at each point of observation based on mechanical energy behavior that can be measured using established motion analysis techniques. It can be used for single-or multiple-skier analyses for evaluation of skiing technique as well as racing tactics. An illustration of its use is shown by analyzing 16 top-level racers using a 3-D kinematical system and video recorded during an alpine ski world cup race. Based on energy behavior of several racers, it is demonstrated that the most direct line with shortest radius of turn is not necessarily the most effective strategy in contrast to what some coaches believe.

Restricted access

Gerald A. Smith, Jill McNitt-Gray and Richard C. Nelson

Cross-country ski technique is undergoing rapid evolution. Alternate stride skating was the dominant technique during the 1985–86 racing season (double poling is synchronized with the “strong” side skate; no poling occurs with the “weak” side skate). High-speed films were made of elite male racers at the Holmenkollen World Cup races, Oslo, Norway (March 1986), skating up a 7° hill. Digitized data were filtered and processed to determine three-dimensional coordinates throughout a complete skating cycle. Ten skiers were analyzed, representing a range of performances. Over the 10-km race length, cycle rates for all skiers were similar; however, cycle lengths were significantly related to cycle velocity. The correlation between cycle velocity and length was r = 0.85. Ski angles were found to be asymmetrical. Weak-side ski angles were negatively related to cycle velocity; strong-side ski angles were similar for all skiers. Center of mass (CM) position throughout the cycle exhibited characteristic differences between faster and slower skiers. CM velocity vector direction was related to cycle velocity. Thus, faster skiers tended to maintain CM motion more nearly aligned with the forward direction.

Restricted access

Pierre Gervais and Craig Wronko

In the past few years there has been a change from emphasizing the classical cross-country ski technique to introducing the skating technique. Use of the skating stride has led to the adoption of roller skates instead of the ratchet-type roller skis for dryland training. Therefore the question arises as to whether the roller skates simulate the movement pattern observed on snow. This study attempted to answer this question and to evaluate the movement similarity between a newly designed skating-specific roller ski and snow skis in performing the skating stride. The marathon skate was chosen for analysis as it was the most established and consistent skating stride. Biomechanical cinematography was used to acquire a sagittal and anterior view of the skiers. Temporal and angular kinematic data were collected. Both dryland devices approximated the snow skiing pattern, yet it was found that due to the discrepancies in the propulsion phase between the roller skates and the snow skis, the “Nordic Skate” roller skis proved to more closely simulate the on-snow technique.

Restricted access

Paavo V. Komi

To understand cross-country (X-C) siding it is important to record and identity forces of skis and poles separately and together. They both contribute to the forward progression, but their functional significance may be more complex than that of the ground reaction forces in running and walking. This report presents two methods to record forces on skis and poles during normal X-C skiing. A long force-platform system with four rows of 6-m long plates is placed under the snow track for recording of Fz and Fy forces of each ski and pole separately. This system is suitable especially for the study of diagonal technique under more strict experimental conditions. The second system consists of small lightweight Fz and Fy component force plates which are installed under the boot and binding. These plates can be easily changed from one ski to another, and telemetric recording allows free skiing over long distances and with different skiing techniques, including skating. The presentation emphasizes the integrated use of either system together with simultaneous cinematographic and electromyographic recordings.

Restricted access

Gerald A. Smith and Brian S. Heagy

A project involving 3-D analysis of skiing technique during the 1992 Olympic Winter Games (Albertville, France) was carried out. This part of the project focused on the open field skating technique of the male skiers of the 50-km race. Three synchronized, high-speed video cameras were used to record the motion of all racers as they passed a site on flat terrain. Analysis was limited to those using the open field technique and whose skating cycle fit within the boundaries of the field being analyzed (n = 17). Several kinematic variables were determined: cycle velocity, cycle length, and cycle rate. Several significant correlations (p < .05) were observed related to performance: cycle velocity was positively related to cycle length (r = .76) but not cycle rate; cycle velocity and cycle length were positively related to strong side knee extension (r = .48 and r = .51, respectively). Thus, faster skiers on flat terrain tended to ski with longer cycle lengths, which perhaps derived from more vigorous knee extension.

Restricted access

Thomas Losnegard, Håvard Myklebust, Øyvind Skattebo, Hans Kristian Stadheim, Øyvind Sandbakk and Jostein Hallén

Purpose:

In the double-poling (DP) cross-country-skiing technique, propulsive forces are transferred solely through the poles. The aim of the current study was to investigate how pole length influences DP performance, O2 cost, and kinematics during treadmill roller skiing.

Methods:

Nine male competitive cross-country skiers (24 ± 3 y, 180 ± 5 cm, 72 ± 5 kg, VO2max running 76 ± 6 mL · kg–1 · min–1) completed 2 identical test protocols using self-selected (84% ± 1% of body height) and long poles (self-selected + 7.5 cm; 88% ± 1% of body height) in a counterbalanced fashion. Each test protocol included a 5-min warm-up (2.5 m/s; 2.5°) and three 5-min submaximal sessions (3.0, 3.5, and 4.0 m/s; 2.5°) for assessment of O2 cost, followed by a selfpaced 1000-m time trial (~3 min, >5.0 m/s; 2.5°). Temporal patterns and kinematics were assessed using accelerometers and 2D video.

Results:

Long poles reduced 1000-m time (mean ± 90% confidence interval; –1.0% ± 0.7%, P = .054) and submaximal O2 cost (–2.7% ± 1.0%, P = .002) compared with self-selected poles. The center-of-mass (CoM) vertical range of displacement tended to be smaller for long than for self-selected poles (23.3 ± 3.0 vs 24.3 ± 3.0 cm, P = .07). Cycle and reposition time did not differ between pole lengths at any speeds tested, whereas poling time tended to be shorter for self-selected than for long poles at the lower speeds (≤3.5 m/s, P ≤ .10) but not at the higher speeds (≥4.0 m/s, P ≥ .23).

Conclusions:

DP 1000-m time, submaximal O2 cost, and CoM vertical range of displacement were reduced in competitive cross-country skiers using poles 7.5 cm longer than self-selected ones.