Search Results

You are looking at 1 - 10 of 478 items for :

Clear All
Restricted access

Glen M. Blenkinsop, Ying Liang, Nicholas J. Gallimore and Michael J. Hiley

Golf courses are designed to incorporate the natural features of the surrounding area, such as using slopes to make the course more challenging. Previous golf studies typically took place in controlled laboratories, with shots made into a net from a flat surface 1 – 4 while kinematic and kinetic

Restricted access

Moeko Ueno, Ichiro Uchiyama, Joseph J. Campos, David I. Anderson, Minxuan He and Audun Dahl

Infants show a dramatic shift in postural and emotional responsiveness to peripheral lamellar optic flow (PLOF) following crawling onset. The present study used a novel virtual moving room to assess postural compensation of the shoulders backward and upward and heart rate acceleration to PLOF specifying a sudden horizontal forward translation and a sudden descent down a steep slope in an infinitely long virtual tunnel. No motion control conditions were also included. Participants were 53 8.5-month-old infants: 25 prelocomotors and 28 hands-and-knees crawlers. The primary findings were that crawling infants showed directionally appropriate postural compensation in the two tunnel motion conditions, whereas prelocomotor infants were minimally responsive in both conditions. Similarly, prelocomotor infants showed nonsignificant changes in heart rate acceleration in the tunnel motion conditions, whereas crawling infants showed significantly higher heart rate acceleration in the descent condition than in the descent control condition, and in the descent condition than in the horizontal translation condition. These findings highlight the important role played by locomotor experience in the development of the visual control of posture and in emotional reactions to a sudden optically specified drop. The virtual moving room is a promising paradigm for exploring the development of perception–action coupling.

Restricted access

Robin S. Vealey, Eric Martin, Angela Coppola, Rose Marie Ward and Jacob Chamberlin

succeed are positive qualities in coaches, they could become a “slippery slope”, where external motivational pressures and unrealistic perfectionism could lead coaches to experience burnout. Thus, the purpose of this study is to examine motivation and perfectionism in relation to the experience of burnout

Restricted access

Moniek Akkerman, Marco van Brussel, Bart C. Bongers, Erik H.J. Hulzebos, Paul J.M Helders and Tim Takken

The objective of this study was to investigate the characteristics of the submaximal Oxygen Uptake Efficiency Slope (OUES) in a healthy pediatric population. Bicycle ergometry exercise tests with gas-analyses were performed in 46 healthy children aged 7–17 years. Maximal OUES, submaximal OUES, V̇O2peak, VEpeak, and ventilatory threshold (VT) were determined. The submaximal OUES correlated highly with V̇O2peak, VEpeak, and VT. Strong correlations were found with basic anthropometric variables. The submaximal OUES could provide an objective, independent measure of cardiorespiratory function in children, reflecting efficiency of ventilation. We recommend expressing OUES values relative to Body Surface Area (BSA) or Fat Free Mass (FFM).

Restricted access

Adriana M. Duquette and David M. Andrews

Considerable variability in tibial acceleration slope (AS) values, and different interpretations of injury risk based on these values, have been reported. Acceleration slope variability may be due in part to variations in the quantification methods used. Therefore, the purpose of this study was to quantify differences in tibial AS values determined using end points at various percentage ranges between impact and peak tibial acceleration, as a function of either amplitude or time. Tibial accelerations were recorded from 20 participants (21.8 ± 2.9 years, 1.7 m ± 0.1 m, 75.1 kg ± 17.0 kg) during 24 unshod heel impacts using a human pendulum apparatus. Nine ranges were tested from 5–95% (widest range) to 45–55% (narrowest range) at 5% increments. ASAmplitude values increased consistently from the widest to narrowest ranges, whereas the ASTime values remained essentially the same. The magnitudes of ASAmplitude values were significantly higher and more sensitive to changes in percentage range than ASTime values derived from the same impact data. This study shows that tibial AS magnitudes are highly dependent on the method used to calculate them. Researchers are encouraged to carefully consider the method they use to calculate AS so that equivalent comparisons and assessments of injury risk across studies can be made.

Restricted access

William P. Ebben


This study evaluated a variety of downhill slopes in an effort to determine the optimal slope for overspeed running.


Thirteen NCAA Division III college athletes who participated in soccer, track, and football ran 40-yd (36.6-m) sprints, on downhill slopes of 2.1°, 3.3°, 4.7°, 5.8°, and 6.9° in random order. All sprints were timed using the Brower Timing System Speedtrap II. Data were analyzed with SSPS 15.0. A 1-way repeated-measures analysis of variance revealed significant main effects for the test slopes (P = .000). Bonferroni-adjusted pairwise comparisons determined that there were a number of differences between the hill slopes.


Analysis reveals that 40-yd sprints performed on hill slopes of approximately 5.8° were optimal compared with flatland running and the other slopes assessed (P < .05). Sprinting on a 5.8° slope increased the subjects’ maximal speed by an average of 0.35 s, resulting in a 6.5% ± 4.0% decrease in 40-yd sprint time compared with fatland running. Compared with the 4.7° slope, the 5.8° slope yielded a 0.10-s faster 40-yd sprint time, resulting in a 1.9% increase in speed.


Those who train athletes for speed should use or develop overspeed hills with slopes of approximately 5.8° to maximize acute sprinting speed. The results of this study bring into question previous recommendations to use hills of 3° downhill slope for this form of overspeed training.

Restricted access

Dan M. Cooper, Szu-Yun Leu, Candice Taylor-Lucas, Kim Lu, Pietro Galassetti and Shlomit Radom-Aizik

Consensus has yet to be achieved on whether obesity is inexorably tied to poor fitness. We tested the hypothesis that appropriate reference of cardiopulmonary exercise testing (CPET) variables to lean body mass (LBM) would eliminate differences in fitness between high-BMI (≥ 95th percentile, n = 72, 50% female) and normal-BMI (< 85th percentile, n = 142, 49% female), otherwise-healthy children and adolescents typically seen when referencing body weight. We measured body composition with dual x-ray absorptiometry (DXA) and CPET variables from cycle ergometry using both peak values and submaximal exercise slopes (peak VO2, ΔVO2/ΔHR, ΔWR/ΔHR, ΔVO2/ΔWR, and ΔVE/ΔVCO2). In contrast to our hypothesis, referencing to LBM tended to lessen, but did not eliminate, the differences (peak VO2 [p < .004] and ΔVO2/ΔHR [p < .02]) in males and females; ΔWR/ΔHR differed between the two groups in females (p = .041) but not males (p = .1). The mean percent predicted values for all CPET variables were below 100% in the high-BMI group. The pattern of CPET abnormalities suggested a pervasive impairment of O2 delivery in the high-BMI group (ΔVO2/ΔWR was in fact highest in normal-BMI males). Tailoring lifestyle interventions to the specific fitness capabilities of each child (personalized exercise medicine) may be one of the ways to stem what has been an intractable epidemic.

Restricted access

Philippe C. Dixon and David J. Pearsall

The purpose of this study was to determine the effect of cross-slope on gait dynamics. Ten young adult males walked barefoot along an inclinable walkway. Ground reaction forces (GRFs), lower-limb joint kinematics, global pelvis orientation, functional leg-length, and joint reaction moments (JRMs) were measured. Statistical analyses revealed differences across limbs (up-slope [US] and down-slope [DS]) and inclinations (level; 0°; and cross-sloped, 6°). Adaptations included increases of nearly 300% in mediolateral GRFs (p < .001), functional shortening the US-limb and elongation of the DS-limb (p < .001), reduced step width (p = .024), asymmetrical changes in sagittal kinematics and JRM, and numerous pronounced coronal plane differences including increased US-hip adduction (and adductor moment) and decreased DS-hip adduction (and adductor moment). Data suggests that modest cross-slopes can induce substantial asymmetrical changes in gait dynamics and may represent a physical obstacle to populations with restricted mobility.

Restricted access

Andreas Schweizer and Robert Hudek

The aim was to investigate differences of the kinetics of the crimp and the slope grip used in rock climbing. Nine cadaver fingers were prepared and fixated with the proximal phalanx in a frame. The superficial (FDS) and deep (FDP) flexor tendons were loaded selectively and together with 40 N in the crimp grip (PIP joint flexed 90°/DIP joint hyperextended) and the slope grip position (<25° flexed/50° flexed respectively). Five different grip sizes were tested and the flexion force which was generated to the grip was measured. In the crimp grip the FDP generated more flexion force in small sized holds whereas the FDS generated more force in the larger holds. During the slope grip the FDP was more effective than the FDS. While both tendons were loaded, the flexion force was always greater during crimp grip compared with the slope grip. The FDP seems to be most important for very small holds using the crimp grip but also during slope grip holds whereas the FDS is more important for larger flat holds.

Restricted access

Gonçalo Dias, Micael S. Couceiro, João Barreiros, Filipe M. Clemente, Rui Mendes and Fernando M.L. Martins

The main objective of this study is to understand the adaptation to external constraints and the effects of variability in a golf putting task. We describe the adaptation of relevant variables of golf putting to the distance to the hole and to the addition of a slope. The sample consisted of 10 adult male (33.80 ± 11.89 years), volunteers, right handed and highly skilled golfers with an average handicap of 10.82. Each player performed 30 putts at distances of 2, 3 and 4 meters (90 trials in Condition 1). The participants also performed 90 trials, at the same distances, with a constraint imposed by a slope (Condition 2). The results indicate that the players change some parameters to adjust to the task constraints, namely the duration of the backswing phase, the speed of the club head and the acceleration at the moment of impact with the ball. The effects of different golf putting distances in the no-slope condition on different kinematic variables suggest a linear adjustment to distance variation that was not observed when in the slope condition.