Search Results

You are looking at 1 - 10 of 70 items for :

  • "substrate oxidation" x
  • All content x
Clear All
Restricted access

Kerri Z. Delaney, Leandra Spatari, Mélanie Henderson, Sylvia Santosa, and Marie-Eve Mathieu

words, there is interindividual variability in oxygen consumption affecting substrate oxidation at a given exercise time or intensity. Ergo, if the question is to compare substrate oxidation during exercise, an individual’s fitness level or response to exercise intensity can be a potential confounder to

Restricted access

Alan J. McCubbin, Anyi Zhu, Stephanie K. Gaskell, and Ricardo J.S. Costa

the impact of a hydrogel-forming CES, compared with a standard CES of the same carbohydrate composition and concentration, during prolonged endurance running. The outcomes included glucose availability and subsequent substrate oxidation, carbohydrate malabsorption as measured by breath hydrogen (H 2

Restricted access

Steven K. Malin, Brooke R. Stephens, Carrie G. Sharoff, Todd A. Hagobian, Stuart R. Chipkin, and Barry Braun

Exercise and metformin may prevent or delay Type 2 diabetes by, in part, raising the capacity for fat oxidation. Whether the addition of metformin has additive effects on fat oxidation during and after exercise is unknown. Therefore, the purpose of this study was to evaluate the effect of metformin on substrate oxidation during and after exercise. Using a double-blind, counter-balanced crossover design, substrate oxidation was assessed by indirect calorimetry in 15 individuals taking metformin (2,000 mg/d) and placebo for 8–10 d. Measurements were made during cycle exercise at 5 submaximal cycle workloads, starting at 30% peak work (Wpeak) and increasing by 10% every 8 min to 70% Wpeak. Substrate oxidation was also measured for 50 min postexercise. Differences between conditions were assessed using analysis of variance with repeated measures, and values are reported as M ± SE. During exercise, fat oxidation (0.19 ± 0.03 vs. 0.15 ± 0.01 g/min, p < .01) and percentage of energy from fat (32% ± 3% vs. 28% ± 3%, p < .01) were higher with metformin than with placebo. Postexercise, metformin slightly lowered fat oxidation (0.12 ± 0.02 to 0.10 ± 0.02 g/min, p < .01) compared with placebo. There was an inverse relationship between postexercise fat oxidation and the rate of fat oxidation during exercise (r = –.68, p < .05). In healthy individuals, metformin has opposing actions on fat oxidation during and after exercise. Whether the same effects are evident in insulin-resistant individuals remains to be determined.

Restricted access

Neil M. Johannsen and Rick L. Sharp

The purpose of this study was to investigate differences in substrate oxidation between dextrose (DEX) and unmodified (UAMS) and acid/alcohol-modified (MAMS) cornstarches. Seven endurance-trained men (VO2peak = 59.1 ± 5.4 mL·kg−1·min−1) participated in 2 h of exercise (66.4% ± 3.3% VO2peak) 30 min after ingesting 1 g/kg body weight of the experimental carbohydrate or placebo (PLA). Plasma glucose and insulin were elevated after DEX (P < 0.05) compared with UAMS, MAMS, and PLA. Although MAMS and DEX raised carbohydrate oxidation rate through 90 min of exercise, only MAMS persisted throughout 120 min (P < 0.05 compared with all trials). Exogenous-carbohydrate oxidation rate was higher in DEX than in MAMS and UAMS until 90 min of exercise. Acid/alcohol modification resulted in augmented carbohydrate oxidation with a small, sustained increase in exogenous-carbohydrate oxidation rate. MAMS appears to be metabolizable and available for oxidation during exercise.

Restricted access

Jeffrey A. Potteiger, Erik P. Kirk, Dennis J. Jacobsen, and Joseph E. Donnelly


To determine whether 16 months of moderate-intensity exercise training changes resting metabolic rate (RMR) and substrate oxidation in overweight young adults.


Participants were randomly assigned to nonexercise control (CON, 18 women, 15 men) or exercise (EX, 25 women, 16 men) groups. EX performed supervised and verified exercise 3–5 d/wk, 20–45 min/session, at 60–75% of heart-rate reserve. Body mass and composition, maximal oxygen consumption (VO2max), RMR, and resting substrate oxidation were assessed at baseline and after 9 and 16 months of training.


EX men had significant decreases from baseline to 9 months in body mass (94.6 ± 12.4 to 89.2 ± 9.5 kg) and percent fat (28.3 ± 4.6 to 24.5 ± 3.9). CON women had significant increases in body mass (80.2 ± 8.1 to 83.2 ± 9.2 kg) from baseline to 16 months. VO2max increased significantly from baseline to 9 months in the EX men (3.67 ± 0.62 to 4.34 ± 0.58 L/min) and EX women (2.53 ± 0.32 to 3.03 ± 0.42 L/min). RMR increased from baseline to 9 months in EX women (1,583 ± 221 to 1,692 ± 230 kcal/d) and EX men (1,995 ± 184 to 2,025 ± 209 kcal/d). There were no significant differences within genders for either EX or CON in fat or carbohydrate oxidation. Fat oxidation was significantly higher for women than for men at 9 months in both CON and EX groups.


Regular moderate-intensity exercise in healthy, previously sedentary overweight and obese adults increases RMR but does not alter resting substrate oxidation. Women tend to have higher RMR and greater fat oxidation, when expressed per kilogram fat-free mass, than men.

Restricted access

Christopher L. Melby, Kristen L. Osterberg, Alyssa Resch, Brenda Davy, Susan Johnson, and Kevin Davy

Thirteen physically active, eumenorrheic, normal-weight (BMI ≤ 25 kg/m2) females, aged 18–30 years, completed 4 experimental conditions, with the order based on a Latin Square Design: (a) CHO/Ex: moderate-intensity exer-· cise (65% V̇O2peak) with a net energy cost of ~500 kcals, during which time the subject consumed a carbohydrate beverage (45 g CHO) at specific time intervals; (b) CHO/NoEx: a period of time identical to (a) but with subjects consuming the carbohydrate while sitting quietly rather than exercising; (c) NoCHO/ Ex: same exercise protocol as condition (a) during which time subjects consumed a non-caloric placebo beverage; and (d) NoCHO/NoEx: same as the no-exercise condition (b) but with subjects consuming a non-caloric placebo beverage. Energy expenditure, and fat and carbohydrate oxidation rates for the entire exercise/sitting period plus a 90-min recovery period were determined by continuous indirect calorimetry. Following recovery, subjects ate ad libitum amounts of food from a buffet and were asked to record dietary intake during the remainder of the day. Total fat oxidation (exercise plus recovery) was attenuated by carbohydrate compared to placebo ingestion by only ~4.5 g. There was a trend (p = .08) for a carbohydrate effect on buffet energy intake such that the CHO/Ex and CHO/NoEx energy intakes were lower than the NoCHO/Ex and NoCHO/NoEx energy intakes, respectively (mean for CHO conditions: 683 kcal; NoCHO conditions: 777 kcal). Average total energy intake (buffet plus remainder of the day) was significantly lower (p < .05) following the conditions when carbohydrate was consumed (CHO/Ex = 1470 kcal; CHO/NoEx = 1285 kcal) compared to the noncaloric placebo (NoCHO/Ex =1767 kcal; NoCHO/ NoEx = 1660 kcal). In conclusion, in young women engaging in regular exercise, ingestion of 45 g of carbohydrate during exercise only modestly suppresses total fat oxidation during exercise. Furthermore, the ingestion of carbohydrate with or without exercise resulted in a lower energy intake for the remainder of the day

Restricted access

Heather M. Logan-Sprenger, George J. F. Heigenhauser, Graham L. Jones, and Lawrence L. Spriet

This study investigated the effects of progressive mild dehydration during cycling on whole-body substrate oxidation and skeletal-muscle metabolism in recreationally active men. Subjects (N = 9) cycled for 120 min at ~65% peak oxygen uptake (VO2peak 22.7 °C, 32% relative humidity) with water to replace sweat losses (HYD) or without fluid (DEH). Blood samples were taken at rest and every 20 min, and muscle biopsies were taken at rest and at 40, 80, and 120 min of exercise. Subjects lost 0.8%, 1.8%, and 2.7% body mass (BM) after 40, 80, and 120 min of cycling in the DEH trial while sweat loss was not significantly different between trials. Heart rate was greater in the DEH trial from 60 to 120 min, and core temperature was greater from 75 to 120 min. Rating of perceived exertion was higher in the DEH trial from 30 to 120 min. There were no differences in VO2, respiratory-exchange ratio, total carbohydrate (CHO) oxidation (HYD 312 ± 9 vs. DEH 307 ± 10 g), or sweat rate between trials. Blood lactate was significantly greater in the DEH trial from 20 to 120 min with no difference in plasma free fatty acids or epinephrine. Glycogenolysis was significantly greater (24%) over the entire DEH vs. HYD trial (433 ± 44 vs. 349 ± 27 mmol · kg−1 · dm−1). In conclusion, dehydration of <2% BM elevated physiological parameters and perceived exertion, as well as muscle glycogenolysis, during exercise without affecting whole-body CHO oxidation.

Restricted access

Oliver J. Chrzanowski-Smith, Robert M. Edinburgh, Mark P. Thomas, Aaron Hengist, Sean Williams, James A. Betts, and Javier T. Gonzalez

composition impacts substrate oxidation during low- to moderate-intensity exercise ( Burke et al., 2015 ; Helge et al., 1996 ). The only prior study to date to observe the independent influences of habitual macronutrient intakes on PFO found that dietary carbohydrate and fat intake were negatively and

Restricted access

David S. Rowlands and Will G. Hopkins

The effect of pre-exercise meal composition on metabolism and performance in cycling were investigated in a crossover study. Twelve competitive cyclists ingested high-fat, high-carbohydrate, or high-protein meals 90 min before a weekly exercise test. The test consisted of a 1-hour pre-load at 55% peak power, five 10-min incremental loads from 55 to 82% peak power (to measure the peak fat-oxidation rate), and a 50-km time trial that included three 1-km and 4-km sprints. A carbohydrate supplement was ingested throughout the exercise. Relative to the high-protein and high-fat meals, the high-carbohydrate meal halved the peak fat-oxidation rate and reduced the fat oxidation across all workloads by a factor of 0.20 to 0.58 (p = .002–.0001). Reduced fat availability may have accounted for this reduction, as indicated by lower plasma fatty acid, lower glycerol, and higher pre-exercise insulin concentrations relative to the other meals (p = .04–.0001). In contrast, fat oxidation following the high-protein meal was similar to that following the high-fat meal. This similarity was linked to evidence suggesting greater lipolysis and plasma fat availability following high-protein relative to high-carbohydrate meals. Despite these substantial effects on metabolism, meal composition had no clear effect on sprint or 50-km performance.

Restricted access

Gordon I. Smith, Asker E. Jeukendrup, and Derek Ball

At rest, administration of the short-chain fatty acid acetate suppresses fat oxidation without affecting carbohydrate utilization. The combined effect of increased acetate availability and exercise on substrate utilization is, however, unclear. With local ethics approval, we studied the effect of ingesting either sodium acetate (NaAc) or sodium bicarbonate (NaHCO3) at a dose of 4 mmol·kg-1 body mass 90 min before completing 120 min of exercise at 50% VO2peak. Six healthy young men completed the trials after an overnight fast and ingested the sodium salts in randomized order. As expected NaAc ingestion decreased resting fat oxidation (mean ± SD; 0.09 ± 0.02 vs. 0.07 ± 0.02 g·min-1 pre- and post-ingestion respectively, p < .05) with no effect upon carbohydrate utilization. In contrast, NaHCO3 ingestion had no effect on substrate utilization at rest. In response to exercise, fat and CHO oxidation increased in both trials, but fat oxidation was lower (0.16 ± 0.10 vs. 0.29 ± 0.11 g·min-1, p < .05) and carbohydrate oxidation higher (1.67 ± 0.35 vs. 1.44 ± 0.22 g·min-1, p < .05) in the NaAc trial compared with the NaHCO3 trial during the first 15 min of exercise. Over the final 75 min of exercise an increase in fat oxidation and decrease in carbohydrate oxidation was observed only in the NaAc trial. These results demonstrate that increasing plasma acetate concentration suppresses fat oxidation both at rest and at the onset of moderate-intensity exercise.