Search Results

You are looking at 1 - 10 of 29 items for :

  • "synchronized swimming" x
Clear All
Restricted access

Sherry Robertson and Margo Mountjoy

concentration, and heart rate measured during a 400-m swim) of individual swimmers is positively linked to synchronized swimming skill. Other studies found that 45–50% of the time is spent underwater, thereby requiring exceptional breath control ( Chatard et al., 1999 ; Homma, 1994 ). Modern routines

Restricted access

Sherry Robertson, Dan Benardot and Margo Mountjoy

The sport of synchronized swimming is unique, because it combines speed, power, and endurance with precise synchronized movements and high-risk acrobatic maneuvers. Athletes must train and compete while spending a great amount of time underwater, upside down, and without the luxury of easily available oxygen. This review assesses the scientific evidence with respect to the physiological demands, energy expenditure, and body composition in these athletes. The role of appropriate energy requirements and guidelines for carbohydrate, protein, fat, and micronutrients for elite synchronized swimmers are reviewed. Because of the aesthetic nature of the sport, which prioritizes leanness, the risks of energy and macronutrient deficiencies are of significant concern. Relative Energy Deficiency in Sport and disordered eating/eating disorders are also of concern for these female athletes. An approach to the healthy management of body composition in synchronized swimming is outlined. Synchronized swimmers should be encouraged to consume a well-balanced diet with sufficient energy to meet demands and to time the intake of carbohydrate, protein, and fat to optimize performance and body composition. Micronutrients of concern for this female athlete population include iron, calcium, and vitamin D. This article reviews the physiological demands of synchronized swimming and makes nutritional recommendations for recovery, training, and competition to help optimize athletic performance and to reduce risks for weight-related medical issues that are of particular concern for elite synchronized swimmers.

Restricted access

Bronwen Lundy

Synchronized swimming enjoys worldwide popularity and has been part of the formal Olympic program since 1984. Despite this, relatively little research has been conducted on participant nutrition practices and requirements, and there are significant gaps in the knowledge base despite the numerous areas in which nutrition could affect performance and safety. This review aimed to summarize current findings and identify areas requiring further research. Uniform physique in team or duet events may be more important than absolute values for muscularity or body fat, but a lean and athletic appearance remains key. Synchronized swimmers appear to have an increased risk of developing eating disorders, and there is evidence of delayed menarche, menstrual dysfunction, and lower bone density relative to population norms. Dietary practices remain relatively unknown, but micronutrient status for iron and magnesium may be compromised. More research is required across all aspects of nutrition status, anthropometry, and physiology, and both sports nutrition and sports medicine support may be required to reduce risks for participants.

Restricted access

Teresa Alentejano, Dru Marshall and Gordon Bell

Purpose:

To determine the total amount and relative time periods of face immersion (FI) in a synchronized swimming solo routine and the relationship between FI, distance covered, and the technical-merit score of the 11 top Canadian soloists at a synchronized swimming national championship (mean age 20 ± 1.8 y, height 173.3 ± 4.1 cm, and body mass 58.3 ± 4 kg).

Methods:

Videotape and timing of solo performances combined with manual tracking of pool patterns.

Results:

Analysis of performance revealed that an average of 18 FI periods, mean of 6.8 s, were performed for an average total time of 133.7 ± 27.1 s (range 102.2 to 199.8 s). The average longest FI time period was 25.45 ± 6.2 s (range 18.18 to 38.72 s), and most (10/11) of these were in the first third of the solo. The mean total horizontal distance covered was 57.61 ± 6.84 m (range 48.61 to 68.2 m), and the total horizontal distance covered relative to time was 0.276 ± 0.034 m/s (range 0.235 to 0.340 m/s). No significant relationships were found between any of the FI periods and the distance covered or between the technical-merit score and FI periods. Each solo contained 6 to 8 underwater sequences, none of which were longer than 40 seconds, the cutoff deemed dangerous by FINA (Fédération Internationale de Natation).

Conclusion:

This study shows that the times underwater for solos in Canada are within safety limits recommended by FINA and that judging in Canada is not related to underwater periods of swimming.

Restricted access

Yves Vanden Auweele, Filip Boen, Annick De Geest and Jos Feys

The purpose of this experiment was to determine whether the open feedback system used in synchronized swimming (i.e., the judges hear and see each others’ scores after having rated each performance) leads to unwanted (i.e., nonperformance-based) conformity in the scoring by judges. Twenty judges in synchronized swimming were randomly divided into four panels of five judges. They had to rate 60 performances of the same imposed figure, the barracuda twirl: 30 performances in Phase 1 and 30 in Phase 2. Two independent variables were orthogonally manipulated: feedback (or none) during Phase 1 and feedback (or none) during Phase 2. In line with the hypotheses, the variation of scores given in Phase 1 was significantly smaller when the judges had received feedback than when they had not received feedback. Moreover, the variation of the scores given in Phase 2 remained significantly smaller among the judges who had received feedback in Phase 1 but not in Phase 2, compared with judges who had not received feedback in either phase. These results indicate that the scoring of judges in synchronized swimming is strongly and lastingly influenced by immediate feedback.

Restricted access

Mònica Solana-Tramunt, Jose Morales, Bernat Buscà, Marina Carbonell and Lara Rodríguez-Zamora

Synchronized swimming (SS) is an Olympic sport involving routines that are technically and physically very demanding and require intense whole-body work performed during apneic episodes 1 , 2 interspersed by short breathing intervals. 2 During the voluntary apnea periods, which constitute up to

Restricted access

Anna Melin, Monica Klungland Torstveit, Louise Burke, Saul Marks and Jorunn Sundgot-Borgen

Disordered eating behavior (DE) and eating disorders (EDs) are of great concern because of their associations with physical and mental health risks and, in the case of athletes, impaired performance. The syndrome originally known as the Female Athlete Triad, which focused on the interaction of energy availability, reproductive function, and bone health in female athletes, has recently been expanded to recognize that Relative Energy Deficiency in Sport (RED-S) has a broader range of negative effects on body systems with functional impairments in both male and female athletes. Athletes in leanness-demanding sports have an increased risk for RED-S and for developing EDs/DE. Special risk factors in aquatic sports related to weight and body composition management include the wearing of skimpy and tight-fitting bathing suits, and in the case of diving and synchronized swimming, the involvement of subjective judgments of performance. The reported prevalence of DE and EDs in athletic populations, including athletes from aquatic sports, ranges from 18 to 45% in female athletes and from 0 to 28% in male athletes. To prevent EDs, aquatic athletes should practice healthy eating behavior at all periods of development pathway, and coaches and members of the athletes’ health care team should be able to recognize early symptoms indicating risk for energy deficiency, DE, and EDs. Coaches and leaders must accept that DE/EDs can be a problem in aquatic disciplines and that openness regarding this challenge is important.

Restricted access

Nuno Oliveira, David H. Saunders and Ross H. Sanders

Purpose:

To investigate the effects of fatigue on the vertical force and kinematics of the lower limbs during maximal water polo eggbeater kicking.

Methods:

Twelve male water polo players maintained as high a position as possible while performing the eggbeater kick with the upper limbs raised out of the water until they were unable to keep the top of the sternum (manubrium) above water. Data comprising 27 complete eggbeater-kick cycles were extracted corresponding to 9 cycles of the initial nonfatigued (0%), 50% time point (50%), and final fatigued (100%) periods of the trial. Vertical force, foot speed, and hip-, knee-, and ankle-joint angles were calculated.

Results:

Mean vertical force (0%, 212.2 N; 50%, 184.5 N; 100%, 164.3 N) progressively decreased with time. Speed of the feet (0.4 m/s), hip abduction (2.9°), and flexion (3.6°) decreased with fatigue, while hip internal rotation (3.6°) and ankle inversion (4°) increased with fatigue. Average angular velocity decreased for all joint motions.

Conclusions:

Eggbeater-kick performance decreases with fatigue. Inability to maintain foot speeds and hip and ankle actions with progressing fatigue diminishes the ability of the player to produce vertical force during the cycle. Increased internal rotation of the hip when fatigued and the large eversion/abduction of the ankle during the cycle may be predisposing factors for the prevalence of patellofemoral pain syndrome observed among eggbeater-kick performers. Appropriate training interventions that can limit the effects of fatigue on performance and injury risk should be considered.

Restricted access

Paula B. Costa, Scott R. Richmond, Charles R. Smith, Brad Currier, Richard A. Stecker, Brad T. Gieske, Kimi Kemp, Kyle E. Witherbee and Chad M. Kerksick

Synchronized swimming is an intense, highly demanding aquatic sport, which combines artistic components and aerobic capacity with muscle strength, power, and endurance. Recent changes in the competition format, as well as the artistic requirements, have led to greater physical demands for athletes

Restricted access

David B. Pyne and Rick L. Sharp

The aquatic sports competitions held during the summer Olympic Games include diving, open-water swimming, pool swimming, synchronized swimming, and water polo. Elite-level performance in each of these sports requires rigorous training and practice to develop the appropriate physiological, biomechanical, artistic, and strategic capabilities specific to each sport. Consequently, the daily training plans of these athletes are quite varied both between and within the sports. Common to all aquatic athletes, however, is that daily training and preparation consumes several hours and involves frequent periods of high-intensity exertion. Nutritional support for this high-level training is a critical element of the preparation of these athletes to ensure the energy and nutrient demands of the training and competition are met. In this article, we introduce the fundamental physical requirements of these sports and specifically explore the energetics of human locomotion in water. Subsequent articles in this issue explore the specific nutritional requirements of each aquatic sport. We hope that such exploration will provide a foundation for future investigation of the roles of optimal nutrition in optimizing performance in the aquatic sports.