Search Results

You are looking at 1 - 10 of 78 items for :

  • "timing gates" x
Clear All
Restricted access

Gregory Roe, Joshua Darrall-Jones, Christopher Black, William Shaw, Kevin Till and Ben Jones

Purpose:

The purpose of this study was to investigate the validity of timing gates and 10-Hz global positioning systems (GPS) units (Catapult Optimeye S5) against a criterion measure (50-Hz radar gun) for assessing maximum sprint velocity (Vmax).

Methods:

Nine male professional rugby union players performed 3 maximal 40-m sprints with 3 min rest between efforts with Vmax assessed simultaneously via timing gates, 10-Hz GPSOpen (Openfield software), GPSSprint (Sprint software), and radar gun. Eight players wore 3 GPS units, while 1 wore a single unit during each sprint.

Results:

When compared with the radar gun, mean biases for GPSOpen, GPSSprint, and timing gates were trivial, small, and small, respectively. The typical error of the estimate (TEE) was small for timing gate and GPSOpen while moderate for GPSSprint. Correlations with radar gun were nearly perfect for all measures. Mean bias, TEE, and correlations between GPS units were trivial, small, and nearly perfect, respectively, while a small TEE existed when GPSOpenfield was compared with GPSSprint.

Conclusion:

Based on these findings, both 10-Hz GPS and timing gates provide valid measures of 40-m Vmax assessment compared with a radar gun. However, as error did exist between measures, the same testing protocol should be used when assessing 40-m Vmax over time. Furthermore, in light of the above results, it is recommended that when assessing changes in GPS-derived Vmax over time, practitioners should use the same unit for each player and perform the analysis with the same software, preferably Catapult Openfield.

Restricted access

Martin Buchheit, Ben M. Simpson, Esa Peltola and Alberto Mendez-Villanueva

The aim of the present study was to locate the fastest 10-m split time (Splitbest) over a 40-m sprint in relation to age and maximal sprint speed in highly trained young soccer players. Analyses were performed on 967 independent player sprints collected in 223 highly trained young football players (Under 12 to Under 18). The maximal sprint speed was defined as the average running speed during Splitbest. The distribution of the distance associated with Splitbest was affected by age (X 2 3 = 158.7, P < .001), with the older the players, the greater the proportion of 30-to-40-m Splitbest. There was, however, no between-group difference when data were adjusted for maximal sprint speed. Maximal sprint speed is the main determinant of the distance associated with Splitbest. Given the important disparity in Splitbest location within each age group, three (U12-U13) to two (U14-U18) 10-m intervals are still required to guarantee an accurate evaluation of maximal sprint speed in young players when using timing gates.

Restricted access

Stefan Altmann, Steffen Ringhof, Benedikt Becker, Alexander Woll and Rainer Neumann

with the trigger of the upper body and ending when the athletes’ dorsum left the light beam. Consequently, ME regarding the upper body was close to 0, whereas the hip moved through the timing gate later, causing higher ME. Moreover, the mentioned forward lean differed between athletes. Accordingly, hip

Restricted access

Tim L.A. Doyle, Ronald W. Davis, Brendan Humphries, Eric L. Dugan, Bryon G. Horn, Jae Kun Shim and Robert U. Newton

A number of researchers have long questioned systems used for classifying athletes with disabilities. Wheelchair basketball players have gained much attention from researchers. Despite this, no change to the NWBA classification system has been made since it was first adopted in 1984. This study investigated the NWBA classification system. At two summer basketball camps, 46 players were tested to assess player sprint performance and stratification under the NWBA medical classification system. The group consisted of Class 1, 2, and 3 players. Electronic timing gates were used to collect 20 meter sprint-times. Results indicate that Class 1 players were significantly slower compared to Class 2 and 3 players (p < .05) with no difference between Class 2 and 3. The results of this study support a change to this system.

Restricted access

Thomas Haugen, Espen Tønnessen and Stephen Seiler

Purpose:

A review of published studies monitoring sprint performance reveals considerable variation in start distance behind the initial timing gate. The aim of the current study was to generate correction factors across varying flying-start distances used in sprint testing with photocells.

Methods:

Forty-four well-trained junior soccer players (age 18.2 ± 1.0 y, height 175 ± 8 cm, body mass 68.4 ± 8.9 kg) performed sprint testing on an indoor sprint track. They were allocated to 3 groups based on sprintperformance level. Times for 10- and 200-m sprint with foot placement ranging from 0.5 to 15 m back from the initial timing gate were recorded twice for each athlete.

Results:

Correction-factor equation coefficients were generated for each of the 3 analyzed groups derived from the phase-decay equation y = (y 0 − PL) × exp(−k × x) + PL, where y = time difference (0.5-m flying start as reference), x = flying-start distance, y 0 is the y value when time is zero, PL (plateau) is the y value at infinite times, and k is the rate constant, expressed in reciprocal of the x-axis time units; if x is in seconds, then k is expressed in inverse seconds. R 2 was ≥.998 across all athlete groups and sprint distances, demonstrating excellent goodness of fit. Within-group time differences were significant (P < .05) across all flying-start distance checkpoints for all groups. Between-groups time-saving differences up to 0.04 s were observed between the fastest and the slowest groups (P < .05).

Conclusions:

Small changes in flying-start distances can cause time differences larger than the typical gains made from specific training, or even the difference between the fastest and slowest elite team-sport athletes. The presented correction factors should facilitate more meaningful comparisons of published sprint-performance results.

Restricted access

Simon Roberts, Grant Trewartha and Keith Stokes

Purpose:

To assess the validity of a digitizing time–motion-analysis method for field-based sports and compare this with a notational-analysis method using rugby-union match play.

Method:

Five calibrated video cameras were located around a rugby pitch, and 1 subject completed prescribed movements within each camera’s view. Running speeds were measured using photocell timing gates. Two experienced operators digitized video data (operator 1 on 2 occasions) to allow 2-dimensional reconstruction of the prescribed movements.

Results:

Accuracy for total distance calculated was within 2.1% of the measured distance. For intraoperator and interoperator reliability, calculated distances were within 0.5% and 0.9%, respectively. Calculated speed was within 8.0% of measured photocell speed with intraoperator and interoperator reliability of 3.4% and 6.0%, respectively. For the method comparison, two 20-minute periods of rugby match play were analyzed for 5 players using the digitizing method and a notational time–motion method. For the 20-minute periods, overall mean absolute differences between methods for percentage time spent and distances covered performing different activities were 3.5% and 198.1 ± 138.1 m, respectively. Total number of changes in activity per 20 minutes were 184 ± 24 versus 458 ± 48, and work-to-rest ratios, 10.0%:90.0% and 7.3%:92.7% for notational and digitizing methods, respectively.

Conclusion:

The digitizing method is accurate and reliable for gaining detailed information on work profiles of field-sport participants and provides applied researchers richer data output than the conventional notational method.

Restricted access

Tania Spiteri, Nicolas H. Hart and Sophia Nimphius

The aim of this study was to compare biomechanical and perceptual-cognitive variables between sexes during an offensive and defensive agility protocol. Twelve male and female (n = 24) recreational team sport athletes participated in this study, each performing 12 offensive and defensive agility trials (6 left, 6 right) changing direction in response to movements of a human stimulus. Three-dimensional motion, ground reaction force (GRF), and impulse data were recorded across plant phase for dominant leg change of direction (COD) movements, while timing gates and high-speed video captured decision time, total running time, and post COD stride velocity. Subjects also performed a unilateral isometric squat to determine lower body strength and limb dominance. Group (sex) by condition (2 × 2) MANOVAs with follow-up ANOVAs were conducted to examine differences between groups (P ≤ .05). Male athletes demonstrated significantly greater lower body strength, vertical braking force and impulse application, knee and spine flexion, and hip abduction, as well as faster decision time and post COD stride velocity during both agility conditions compared with females. Differences between offensive and defensive movements appear to be attributed to differences in decision time between sexes. This study demonstrates that biomechanical and perceptual-cognitive differences exist between sexes and within offensive and defensive agility movements.

Restricted access

Ryu Nagahara, Alberto Botter, Enrico Rejc, Masaaki Koido, Takeshi Shimizu, Pierre Samozino and Jean-Benoit Morin

Purpose:

To test the concurrent validity of data from 2 different global positioning system (GPS) units for obtaining mechanical properties during sprint acceleration using a field method recently validated by Samozino et al.

Methods:

Thirty-two athletes performed maximal straight-line sprints, and their running speed was simultaneously measured by GPS units (sampling rate: 20 or 5 Hz) and either a radar or laser device (devices taken as references). Lower-limb mechanical properties of sprint acceleration (theoretical maximal force, theoretical maximal speed, maximal power) were derived from a modeling of the speed–time curves using an exponential function in both measurements. Comparisons of mechanical properties from 20- and 5-Hz GPS units with those from reference devices were performed for 80 and 62 trials, respectively.

Results:

The percentage bias showed a wide range of overestimation or underestimation for both systems (-7.9% to 9.7% and -5.1% to 2.9% for 20- and 5-Hz GPS), while the ranges of its 90% confidence limits for 20-Hz GPS were markedly smaller than those for 5-Hz GPS. These results were supported by the correlation analyses.

Conclusions:

Overall, the concurrent validity for all variables derived from 20-Hz GPS measurements was better than that obtained from the 5-Hz GPS units. However, in the current state of GPS devices’ accuracy for speed–time measurements over a maximal sprint acceleration, it is recommended that radar, laser devices, and timing gates remain the reference methods for implementing the computations of Samozino et al.

Restricted access

Jon L. Oliver and Robert W. Meyers

Purpose:

The purpose of the current study was to assess the reliability of a new protocol that examines different components of agility using commercially available timing gates.

Methods:

Seventeen physically active males completed four trials of a new protocol, which consisted of a number of 10-m sprints. Sprints were completed in a straight line or with a change of direction after 5 m. The change of direction was either planned or reactive, with participants reacting to a visual light stimulus.

Results:

There was no systematic bias in any of the measures, although random variation was reduced in the straight acceleration and planned agility when considering only the fnal pair of trials, with mean coefficients of variation (CV) of 1.6% (95%CI, 1.2% to 2.4%) and 1.1% (0.8% to 1.7%), respectively. Reliability of reactive agility remained consistent throughout with mean CVs of approximately 3%. Analyses revealed a high degree of common variance between acceleration times and both planned (r 2 = .93) and reactive (r 2 = .83) agility, as well as between the two agility protocols (r 2 = .87).

Conclusion:

Both planned and reactive agility could be measured reliably. Protocol design and use of a light stimulus in the reactive test emphasize physical abilities comparable with other test measures. Therefore, inclusion of a reactive light stimulus does not appear to require any additional perceptual qualities.

Restricted access

César Meylan, Joshua Trewin and Kelly McKean

The aims of the current study were to examine the external validity of inertial-based parameters (inertial movement analysis [IMA]) to detect multiplanar explosive actions during maximal sprinting and change of direction (COD) and to further determine its reliability, set appropriate magnitude bands for match analysis, and assess its variability during international women’s soccer matches. Twenty U20 female soccer players, wearing global positioning system (GPS) units with a built-in accelerometer, completed 3 trials of a 40-m sprint and a 20-m sprint with a change of direction to the right or left at 10 m. Furthermore, 13 women’s national-team players (157 files; 4–27 matches/player) were analyzed to ascertain match-to-match variability. Video synchronization indicated that the IMA signal was instantaneous with explosive movement (acceleration, deceleration, COD). Peak GPS velocity during the 40-m sprint showed similar reliability (coefficient of variation [CV] = 2.1%) to timing gates but increased before and after COD (CV = 4.5–13%). IMA variability was greater at the start of sprints (CV = 16–21%) than before and after COD (CV = 13–16%). IMA threshold for match analysis was set at 2.5 m · s–1 · s–1 by subtracting 1 SD from the mean IMA during sprint trials. IMA match variability (CV = 14%) differed from high-speed GPS metrics (35–60%). Practitioners are advised that timing lights should remain the gold standard for monitoring sprint and acceleration capabilities of athletes. However, IMA could be a reliable method to monitor explosive actions between matches and assess changes due to various factors such as congested schedule, tactics, heat, or altitude.