Search Results

You are looking at 1 - 10 of 47 items for :

  • "training mode" x
  • All content x
Clear All
Restricted access

Aaron T. Scanlan, Neal Wen, Patrick S. Tucker, Nattai R. Borges, and Vincent J. Dalbo

Purpose:

To compare perceptual and physiological training-load responses during various basketball training modes.

Methods:

Eight semiprofessional male basketball players (age 26.3 ± 6.7 y, height 188.1 ± 6.2 cm, body mass 92.0 ± 13.8 kg) were monitored across a 10-wk period in the preparatory phase of their training plan. Player session ratings of perceived exertion (sRPE) and heart-rate (HR) responses were gathered across base, specific, and tactical/game-play training modes. Pearson correlations were used to determine the relationships between the sRPE model and 2 HR-based models: the training impulse (TRIMP) and summated HR zones (SHRZ). One-way ANOVAs were used to compare training loads between training modes for each model.

Results:

Stronger relationships between perceptual and physiological models were evident during base (sRPE-TRIMP r = .53, P < .05; sRPE-SHRZ r = .75, P < .05) and tactical/game-play conditioning (sRPE-TRIMP r = .60, P < .05; sRPE-SHRZ r = .63; P < .05) than during specific conditioning (sRPE-TRIMP r = .38, P < .05; sRPE-SHRZ r = .52; P < .05). Furthermore, the sRPE model detected greater increases (126–429 AU) in training load than the TRIMP (15–65 AU) and SHRZ models (27–170 AU) transitioning between training modes.

Conclusions:

While the training-load models were significantly correlated during each training mode, weaker relationships were observed during specific conditioning. Comparisons suggest that the HR-based models were less effective in detecting periodized increases in training load, particularly during court-based, intermittent, multidirectional drills. The practical benefits and sensitivity of the sRPE model support its use across different basketball training modes.

Restricted access

Donna Beshgetoor, Jeanne F. Nichols, and Inah Rego

The focus of this prospective, observational study was to determine the effect of sport-specific training and calcium intake on bone mineral density (BMD) in female master cyclists, runners and non-athletes. Thirty women (12 cyclists, 9 runners, 9 controls), mean age of 49.6 ±7.9 years, were assessed at baseline and 18 months for calcium intake (4-day records), current exercise activity (recall questionnaire), and BMD of the lumbar spine and hip (DXA). A three (cyclists, runners, controls) by two (0 and 18 months) repeated measures ANOVA demonstrated a significant interaction effect of sport and time at the femoral neck (p < .04). Tukey post hoc analysis indicated that the BMD of the femur was maintained in cyclists and runners but declined in controls (p < .05). A significant time effect was noted in BMD at the lumbar spine (p < .001) and the trochanter (p < .003). BMD of the lumbar spine was maintained in runners but declined in cyclists (p < .007) and in controls (p < .03), while trochanteric BMD declined in all groups (p < .01). No significant interaction effect of sport and dietary calcium intake was noted for BMD at any site.

Restricted access

Øyvind Sandbakk, Thomas Haugen, and Gertjan Ettema

Purpose: To provide novel insight regarding the influence of exercise modality on training load management by (1) providing a theoretical framework for the impact of physiological and biomechanical mechanisms associated with different exercise modalities on training load management in endurance exercise and (2) comparing effort-matched low-intensity training sessions performed by top-level athletes in endurance sports with similar energy demands. Practical Applications and Conclusions: The ability to perform endurance training with manageable muscular loads and low injury risks in different exercise modalities is influenced both by mechanical factors and by muscular state and coordination, which interrelate in optimizing power production while reducing friction and/or drag. Consequently, the choice of exercise modality in endurance training influences effort beyond commonly used external and internal load measurements and should be considered alongside duration, frequency, and intensity when managing training load. By comparing effort-matched low- to moderate-intensity sessions performed by top-level athletes in endurance sports, this study exemplifies how endurance exercise with varying modalities leads to different tolerable volumes. For example, the weight-bearing exercise and high-impact forces in long-distance running put high loads on muscles and tendons, leading to relatively low training volume tolerance. In speed skating, the flexed knee and hip position required for effective speed skating leads to occlusion of thighs and low volume tolerance. In contrast, the non-weight-bearing, low-contraction exercises in cycling or swimming allow for large volumes in the specific exercise modalities. Overall, these differences have major implications on training load management in sports.

Restricted access

Jennifer A. Bunn, Bradley J. Myers, and Mary K. Reagor

statistical analysis. 13 – 15 Weaving et al 13 , 14 utilized a statistical method, principal component analysis (PCA), to evaluate important metrics to describe the training load of training modes in professional rugby players and has recently provided steps for sport scientists to carry out PCA with their

Restricted access

Agustín Manresa-Rocamora, José Manuel Sarabia, Julio Sánchez-Meca, José Oliveira, Francisco Jose Vera-Garcia, and Manuel Moya-Ramón

(a) the training mode (treadmill, cycle ergometer, or a combination of different exercises) and (b) the session duration (in minutes). In the analysis units of HIIT, the length of the training was calculated as number of intervals × interval length . As regards the training duration progression, the

Restricted access

Dan Weaving, Phil Marshall, Keith Earle, Alan Nevill, and Grant Abt

Purpose:

This study investigated the effect of training mode on the relationships between measures of training load in professional rugby league players.

Methods:

Five measures of training load (internal: individualized training impulse, session rating of perceived exertion; external—body load, high-speed distance, total impacts) were collected from 17 professional male rugby league players over the course of two 12-wk preseason periods. Training was categorized by mode (small-sided games, conditioning, skills, speed, strongman, and wrestle) and subsequently subjected to a principal-component analysis. Extraction criteria were set at an eigenvalue of greater than 1. Modes that extracted more than 1 principal component were subjected to a varimax rotation.

Results:

Small-sided games and conditioning extracted 1 principal component, explaining 68% and 52% of the variance, respectively. Skills, wrestle, strongman, and speed extracted 2 principal components each explaining 68%, 71%, 72%, and 67% of the variance, respectively.

Conclusions:

In certain training modes the inclusion of both internal and external training-load measures explained a greater proportion of the variance than any 1 individual measure. This would suggest that in training modes where 2 principal components were identified, the use of only a single internal or external training-load measure could potentially lead to an underestimation of the training dose. Consequently, a combination of internal- and external-load measures is required during certain training modes.

Restricted access

Ahmadreza Nematollahi, Fahimeh Kamali, Ali Ghanbari, Zahra Etminan, and Sobhan Sobhani

The aim of this study was to examine and compare the effects of conventional, multisensory, and dual-task exercises on balance ability in a group of older community dwellers over a four-week period. Forty-four older people were randomly assigned to one of the three training groups. The score on the Fullerton Advanced Balance (FAB) scale, gait stability ratio, and walking speed were evaluated at baseline and after four weeks of training. All three groups showed significant (p < .001) improvement in the FAB scores following the three training programs (on average, 3 points for the conventional and multisensory groups and 3.8 points for the dual-task group). The improvements were comparable across the three intervention groups (p = .23). There were no statistically significant differences, neither within nor between groups, in the gait stability ratio and walking speed across the three training groups. In a four-week period, all the training modes were effective in improving balance of older adults, with no significant superiority of one mode of training over another.

Restricted access

Monoem Haddad, Anis Chaouachi, Carlo Castagna, Del P. Wong, David G. Behm, and Karim Chamari

Purpose:

The session rating of perceived exertion (RPE) is a practical and non-invasive method that allows a quantification of the internal training load (TL) in individual and team sports, but no study has investigated its construct validity in martial arts. Therefore, the purpose of this study was to examine the convergent validity between the session-RPE method and two objective HR-based methods for quantifying the similar TL during a high-TL camp in young Taekwondo (TKD) athletes.

Methods:

Ten young TKD athletes (mean ± SD: age, 13.1 ± 2.4 y; body mass, 46.1 ± 12.7 kg; height, 1.53 ± 0.15 m; maximum heart rate (HRmax), 201.0 ± 8.2 bpm) participated in this study. During the training period, subjects performed 35 TKD training sessions, including two formal competitions during which RPE and HR were recorded and analyzed (308 individual training sessions). Correlation analysis was used to evaluate the convergent validity between session-RPE method and the two commonly used HR-based methods for assessing TL in a variety of training modes.

Results:

Significant relationships were found between individual session-RPE and all the HR-based TLs (r values from 0.55 to 0.90; P < .001). Significant correlations were observed in all mode of exercises practiced in TKD.

Conclusions:

This study shows that session-RPE can be considered as a valid method to assess TL in TKD.

Restricted access

Helen Alexiou and Aaron J. Coutts

Purpose:

The purpose of this study was to compare the session-RPE method for quantifying internal training load (TL) with various HR-based TL quantification methods in a variety of training modes with women soccer players.

Methods:

Fifteen elite women soccer players took part in the study (age: 19.3 ± 2.0 y and VO2max: 50.8 ± 2.7 mL·kg−1·min−1). Session-RPE, heart rate, and duration were recorded for 735 individual training sessions and matches over a period of 16 wk. Correlation analysis was used to compare session-RPE TLs with three commonly used HR-based methods for assessing TL.

Results:

The mean correlation for session-RPE TL with Banister’s TRIMP, LTzone TL and Edwards’s TL were (r = 0.84, 0.83, and 0.85, all P < .01, respectively). Correlations for session-RPE TL and three HR-based methods separated by session type were all significant (all P < .05). The strongest correlations were reported for technical (r = 0.68 to 0.82), conditioning (r = 0.60 to 0.79), and speed sessions (r = 0.61 to 0.79).

Conclusion:

The session-RPE TL showed a significant correlation with all training types common to soccer. Higher correlations were found with less intermittent, aerobic-based training sessions and suggest that HR-based TLs relate better to session-RPE TLs in less intermittent training activities. These results support previous findings showing that the session-RPE TL compares favorably with HR-based methods for quantifying internal TL in a variety of soccer training activities.

Restricted access

Jonathan M. Taylor, Tom W. Macpherson, Shaun J. McLaren, Iain Spears, and Matthew Weston

Purpose:

To compare the effects of 2 repeated-sprint training programs on fitness in soccer.

Methods:

Fifteen semiprofessional soccer players (age: 24 ± 4 y; body mass: 77 ± 8 kg) completed 6 repeated-sprint training sessions over a 2-week period. Players were assigned to a straight-line (STR) (n = 8; 3–4 sets of 7 × 30 m) or change of direction (CoD) (n = 7; 3–4 sets of 7 × 20-m) repeated-sprint training group. Performance measures included 5-, 10-, and 20-m sprints, countermovement jump, Illinois agility, and Yo-Yo Intermittent Recovery Test level 1 (YYIRTL1) performance. Internal (heart rate) and external (global positioning system-derived measures) training loads were monitored throughout. Data were analyzed using magnitude-based inferences.

Results:

Internal and external loads were higher in the STR group than in the CoD group with large differences in maximum velocity (28.7%; ±90% confidence limits, 3.3%), moderate differences in mean heart rates (7.0%; ±1.4%) and PlayerLoad (17.6%; ±8.6%), and small differences in peak heart rates (3.0%; ±1.6%). Large improvements in 5-m (STR: 9.6%; ±7.0% and CoD: 9.4%; ±3.3%), 10-m (STR: 6.6%; ±4.6% and CoD: 6.7%; ±2.2%), and 20-m (STR: 3.6; ±4.0% and CoD: 4.0; ±1.7%) sprints were observed. Large and moderate improvements in YYIRTL1 performance were observed in the STR (24.0%; ±9.3%) and CoD (31.0%; ±7.5%), respectively. Between-groups differences in outcome measures were unclear.

Conclusions:

Two weeks of repeated-sprint training stimulates improvements in acceleration, speed, and high-intensity running performance in soccer players. Despite STR inducing higher internal and external training loads, training adaptations were unclear between training modes, indicating a need for further research.