Search Results

You are looking at 1 - 10 of 97 items for :

  • "training prescription" x
Clear All
Restricted access

Alejandro Javaloyes, Jose Manuel Sarabia, Robert Patrick Lamberts and Manuel Moya-Ramon

, 20 and cross-country skiing, 21 this new training prescription strategy has not been used in road cycling yet. Therefore, the purpose of this study was to determine the effect of an HRV-guided and a traditionally periodized training program on road cycling performance. Methods Subjects Seventeen

Restricted access

Jace A. Delaney, Heidi R. Thornton, John F. Pryor, Andrew M. Stewart, Ben J. Dascombe and Grant M. Duthie

Purpose:

To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies.

Methods:

Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s2), and average metabolic power (Pmet) for a range of durations (1–10 min). Differences between positions and durations were described using a magnitude-based network.

Results:

Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27–1.00). Pmet demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86–0.99). Halfbacks demonstrated the greatest relative distance and Pmet outputs but were similar to outside backs and loose forwards in AveAcc demands.

Conclusions:

The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

Open access

Stephen Seiler and Øystein Sylta

The purpose of this study was to compare physiological responses and perceived exertion among well-trained cyclists (n = 63) performing 3 different high-intensity interval-training (HIIT) prescriptions differing in work-bout duration and accumulated duration but all prescribed with maximal session effort. Subjects (male, mean ± SD 38 ± 8 y, VO2peak 62 ± 6 mL · kg–1 · min–1) completed up to 24 HIIT sessions over 12 wk as part of a training-intervention study. Sessions were prescribed as 4 × 16, 4 × 8, or 4 × 4 min with 2-min recovery periods (8 sessions of each prescription, balanced over time). Power output, HR, and RPE were collected during and after each work bout. Session RPE was reported after each session. Blood lactate samples were collected throughout the 12 wk. Physiological and perceptual responses during >1400 training sessions were analyzed. HIIT sessions were performed at 95% ± 5%, 106% ± 5%, and 117% ± 6% of 40-min time-trial power during 4 × 16-, 4 × 8-, and 4 × 4-min sessions, respectively, with peak HR in each work bout averaging 89% ± 2%, 91% ± 2%, and 94% ± 2% HRpeak. Blood lactate concentrations were 4.7 ± 1.6, 9.2 ± 2.4, and 12.7 ± 2.7 mmol/L. Despite the common prescription of maximal session effort, RPE and sRPE increased with decreasing accumulated work duration (AWD), tracking relative HR. Only 8% of 4 × 16-min sessions reached RPE 19–20, vs 61% of 4 × 4-min sessions. The authors conclude that within the HIIT duration range, performing at “maximal session effort” over a reduced AWD is associated with higher perceived exertion both acutely and postexercise. This may have important implications for HIIT prescription choices.

Restricted access

Benoit Capostagno, Michael I. Lambert and Robert P. Lamberts

Finding the optimal balance between high training loads and recovery is a constant challenge for cyclists and their coaches. Monitoring improvements in performance and levels of fatigue is recommended to correctly adjust training to ensure optimal adaptation. However, many performance tests require a maximal or exhaustive effort, which reduces their real-world application. The purpose of this review was to investigate the development and use of submaximal cycling tests that can be used to predict and monitor cycling performance and training status. Twelve studies met the inclusion criteria, and 3 separate submaximal cycling tests were identified from within those 12. Submaximal variables including gross mechanical efficiency, oxygen uptake (VO2), heart rate, lactate, predicted time to exhaustion (pTE), rating of perceived exertion (RPE), power output, and heart-rate recovery (HRR) were the components of the 3 tests. pTE, submaximal power output, RPE, and HRR appear to have the most value for monitoring improvements in performance and indicate a state of fatigue. This literature review shows that several submaximal cycle tests have been developed over the last decade with the aim to predict, monitor, and optimize cycling performance. To be able to conduct a submaximal test on a regular basis, the test needs to be short in duration and as noninvasive as possible. In addition, a test should capture multiple variables and use multivariate analyses to interpret the submaximal outcomes correctly and alter training prescription if needed.

Restricted access

Jonathan D. Bartlett, Fergus O’Connor, Nathan Pitchford, Lorena Torres-Ronda and Samuel J. Robertson

Purpose:

The aim of this study was to quantify and predict relationships between rating of perceived exertion (RPE) and GPS training-load (TL) variables in professional Australian football (AF) players using group and individualized modeling approaches.

Methods:

TL data (GPS and RPE) for 41 professional AF players were obtained over a period of 27 wk. A total of 2711 training observations were analyzed with a total of 66 ± 13 sessions/player (range 39–89). Separate generalized estimating equations (GEEs) and artificial-neural-network analyses (ANNs) were conducted to determine the ability to predict RPE from TL variables (ie, session distance, high-speed running [HSR], HSR %, m/min) on a group and individual basis.

Results:

Prediction error for the individualized ANN (root-mean-square error [RMSE] 1.24 ± 0.41) was lower than the group ANN (RMSE 1.42 ± 0.44), individualized GEE (RMSE 1.58 ± 0.41), and group GEE (RMSE 1.85 ± 0.49). Both the GEE and ANN models determined session distance as the most important predictor of RPE. Furthermore, importance plots generated from the ANN revealed session distance as most predictive of RPE in 36 of the 41 players, whereas HSR was predictive of RPE in just 3 players and m/min was predictive of RPE in just 2 players.

Conclusions:

This study demonstrates that machine learning approaches may outperform more traditional methodologies with respect to predicting athlete responses to TL. These approaches enable further individualization of load monitoring, leading to more accurate training prescription and evaluation.

Restricted access

Robert W. Pettitt

The use of personal records (PRs) for running different distances may be used to derive critical speed (CS) and the finite capacity for running speeds exceeding CS (D′). Using CS and D′, individualized speed-time and distance-time relationships can be modeled (ie, time limits associated with running at a given speed or a given distance can be derived via linear regression with a high degree of accuracy). The running 3-min all-out exercise test (3 MT) has emerged as a method for estimating CS and D′ on a large group of athletes in a single visit. Such a procedure is useful when PRs are not readily available (eg, team-sport athletes). This article reviews how to administer and interpret the running 3 MT, how CS and D′ can inform racing strategy, and how CS and D′ can be used to prescribe and evaluate high-intensity interval training (HIIT). Directions for deriving HIIT bouts using either fixed distances or fixed speeds are provided along with CS dose-responses to short-term HIIT programs.

Restricted access

Harry G. Banyard, James J. Tufano, Jose Delgado, Steve W. Thompson and Kazunori Nosaka

Purpose: To compare kinetic and kinematic data from 3 different velocity-based training sessions and a 1-repetition-maximum (1RM)-percent-based training (PBT) session using full-depth, free-weight back squats with maximal concentric effort. Methods: Fifteen strength-trained men performed 4 randomized resistance-training sessions 96 h apart: PBT session involved 5 sets of 5 repetitions using 80% 1RM; load–velocity profile (LVP) session contained 5 sets of 5 repetitions with a load that could be adjusted to achieve a target velocity established from an individualized LVP equation at 80% 1RM; fixed sets 20% velocity loss threshold (FSVL20) session consisted of 5 sets at 80% 1RM, but sets were terminated once the mean velocity (MV) dropped below 20% of the threshold velocity or when 5 repetitions were completed per set; and variable sets 20% velocity loss threshold session comprised 25 repetitions in total, but participants performed as many repetitions in a set as possible until the 20% velocity loss threshold was exceeded. Results: When averaged across all repetitions, MV and peak velocity (PV) were significantly (P < .05) faster during the LVP (MV effect size [ES] = 1.05; PV ES = 1.12) and FSVL20 (MV ES = 0.81; PV ES = 0.98) sessions compared with PBT. Mean time under tension (TUT) and concentric TUT were significantly less during the LVP sessions compared with PBT. The FSVL20 sessions had significantly less repetitions, total TUT, and concentric TUT than PBT. No significant differences were found for all other measurements between any of the sessions. Conclusions: Velocity-based training permits faster velocities and avoids additional unnecessary mechanical stress but maintains similar measures of force and power output compared with strength-oriented PBT in a single training session.

Restricted access

Hani Al Haddad, Ben M. Simpson, Martin Buchheit, Valter Di Salvo and Alberto Mendez-Villanueva

This study assessed the relationship between peak match speed (PMS) and maximal sprinting speed (MSS) in regard to age and playing positions. MSS and absolute PMS (PMSAbs) were collected from 180 male youth soccer players (U13–U17, 15.0 ± 1.2 y, 161.5 ± 9.2 cm, and 48.3 ± 8.7 kg). The fastest 10-m split over a 40-m sprint was used to determine MSS. PMSAbs was recorded using a global positioning system and was also expressed as a percentage of MSS (PMSRel). Sprint data were compared between age groups and between playing positions. Results showed that regardless of age and playing positions, faster players were likely to reach higher PMSAbs and possibly lower PMSRel. Despite a lower PMSAbs than in older groups (eg, 23.4 ± 1.8 vs 26.8 ± 1.9 km/h for U13 and U17, respectively, ES = 1.9 90%, confidence limits [1.6;2.1]), younger players reached a greater PMSRel (92.0% ± 6.3% vs. 87.2% ± 5.7% for U13 and U17, respectively, ES = –0.8 90% CL [–1.0;–0.5]). Playing position also affected PMSAbs and PMSRel, as strikers were likely to reach higher PMSAbs (eg, 27.0 ± 2.7 vs 23.6 ± 2.2 km/h for strikers and central midfielders, respectively, ES = 2.0 [1.7;2.2]) and PMSRel (eg, 93.6% ± 5.2% vs 85.3% ± 6.5% for strikers and central midfielders, respectively, ES = 1.0 [0.7;1.3]) than all other positions. The findings confirm that age and playing position affect the absolute and relative intensity of speed-related actions during matches.

Open access

Christopher P. Belcher and Cynthia Lee A. Pemberton

A training program designed to optimize athletes’ performance abilities cannot be practically planned or implemented without a valid and reliable indication of training intensity and its effect on the physiological mechanisms of the human body. The objectives of this paper are to (a) review training-intensity guidelines developed for coaches, inclusive of the associated physiologic metrics validated in a field study; (b) describe a seasonal application of the guidelines for coaches; and (c) share supporting commentary from coaches interviewed in the field study. A standardized system of training-intensity guidelines for the sports of track and field/cross country was field tested. The system was modeled after the standardized system of training-intensity guidelines used by USA Swimming. Track and field and cross country coaches were asked to comment on the perceived utility of the standardized training-intensity guidelines. Results of the field study show that coaches uniformly confirmed the utility and applicability of the training-intensity guidelines.

Restricted access

Oliver Faude, Tim Meyer and Wilfried Kindermann

Purpose:

The work rate (WR) corresponding to ventilatory threshold (VT) is an appropriate intensity for regenerative and low-intensity training sessions. During incremental ramp exercise, VO2 increase lags behind WR increase. Traditionally, a VO2 time delay (t d) of 45 seconds is used to calculate the WR at VT from such tests. Considerable inaccuracies were observed when using this constant t d. Therefore, this study aimed at reinvestigating the temporal relationship between VO2 and WR at VT.

Methods:

20 subjects (VO2peak 49.9 to 72.6 mL · min–1 · kg–1) performed a ramp test in order to determine VT and a subsequent steady-state test during which WR was adjusted to elicit the VO2 corresponding to VT. The difference in WR and heart rate at VT was calculated between the ramp and the steady-state test (WRdiff, HRdiff) as well as the time delay corresponding to WRdiff during ramp exercise.

Results:

Mean values were t d = 85 ± 26 seconds (range 38 to 144), WRdiff = 45 ± 12 W (range 23 to 67), HRdiff = 1 ± 9 beats/min (range –21 to +15). The limits of agreement for the difference between WR at VT during ramp and steady-state exercise were ± 24 W. No signifi cant influence on t d, WRdiff, or HRdiff from differences in endurance capacity (VO2peak and VT; P > .10 for all correlations) or ramp increment (P = .26, .49, and .85, respectively) were observed.

Conclusion:

The wide ranges of t d, WRdiff, and HRdiff prevent the derivation of exact training guidelines from single-ramp tests. It is advisable to perform a steady-state test to exactly determine the WR corresponding to VT.