Search Results

You are looking at 1 - 10 of 40 items for :

  • "training zones" x
Clear All
Restricted access

Claire A. Molinari, Florent Palacin, Luc Poinsard and Véronique L. Billat

perceived exertion. Recreational runners often define their training zones with reference to the estimated running speed associated with their maximal level of oxygen consumption ( v V ˙ O 2 max ) or their maximal heart rate (HR max ). 1 , 2 Some runners train with a coach who can measure the HR max and

Restricted access

Stephen W. Garland and Greg Atkinson

Purpose:

To assess the effect of sample site (earlobe vs toe) and incremental exercise protocol (continuous vs discontinuous) on training zone prescription in rowing.

Methods:

Twenty-six rowers performed two incremental exercise tests on an ergometer: (1) a five-step discontinuous test with 4-min stages and 30-W increment, with blood samples taken from the earlobe and toe at the start of the 1-min break between steps; (2) a continuous test, with 2-min stages and 30-W increment, with blood samples taken from the right first toe at the end of each stage. Blood was analyzed for lactate concentration.

Results:

At a lactate concentration of 2 mmol·L−1, the mean (95% CI) power output was 8.1 (± 15.4) W greater for the continuous protocol, the random error between the methods (1.96 × SD of differences) was ± 58.8 W, and there was no evidence of any relationship between power output and error between methods. At a lactate concentration of 4 mmol·L−1, the mean (95% CI) power output was 24.2 (± 17.0) W greater for the continuous protocol, and the random error was ± 64.8 W. At 4 mmol·L−1, systematic bias between methods increased with high power outputs.

Conclusions:

The continuous protocol with toe sampling led to higher power outputs for a given lactate concentration compared with the discontinuous protocol with earlobe sampling. This was partly due to the choice of sample site and largely due to the choice of protocol. This bias, and also random variability, makes direct comparison of these tests inappropriate.

Restricted access

Erling A. Algrøy, Ken J. Hetlelid, Stephen Seiler and Jørg I. Stray Pedersen

Purpose:

This study was designed to quantify the daily distribution of training intensity in a group of professional soccer players in Norway based on three different methods of training intensity quantification.

Methods:

Fifteen male athletes (age, 24 ± 5 y) performed treadmill test to exhaustion to determine heart rate and VO2 corresponding to ventilatory thresholds (VT1, VT2), maximal oxygen consumption (VO2max) and maximal heart rate. VT1 and VT2 were used to delineate three intensity zones based on heart rate. During a 4 wk period in the preseason (N = 15), and two separate weeks late in the season (N = 11), all endurance and on-ball training sessions (preseason: N = 378, season: N= 78) were quantified using continuous heart rate registration and session rating of perceived exertion (sRPE). Three different methods were used to quantify the intensity distribution: time in zone, session goal and sRPE.

Results:

Intensity distributions across all sessions were similar when based on session goal or by sRPE. However, intensity distribution based on heart rate cut-offs from standardized testing was significantly different (time in zone).

Conclusions:

Our findings suggest that quantifying training intensity by using heart rate based total time in zone is not valid for describing the effective training intensity in soccer. The results also suggest that the daily training intensity distribution in this representative group of high level Norwegian soccer players is organized after a pattern where about the same numbers of training sessions are performed in low lactate, lactate threshold, and high intensity training zones.

Restricted access

R. Pla, Y. Le Meur, A. Aubry, J.F. Toussaint and P. Hellard

) and THR training (zone 2) (about 90% of the total training time), 2 and the second showing high intensity (zone 3; above V4 mmol·L −1 ) that is close to the distribution of the so-called polarized (POL) model (volume in zone 1 higher than 70% and volume in zone 3 tending toward 15%). 4 From an

Restricted access

Iker Muñoz, Stephen Seiler, Javier Bautista, Javier España, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To quantify the impact of training-intensity distribution on 10K performance in recreational athletes.

Methods:

30 endurance runners were randomly assigned to a training program emphasizing low-intensity, sub-ventilatory-threshold (VT), polarized endurance-training distribution (PET) or a moderately high-intensity (between-thresholds) endurance-training program (BThET). Before the study, the subjects performed a maximal exercise test to determine VT and respiratory-compensation threshold (RCT), which allowed training to be controlled based on heart rate during each training session over the 10-wk intervention period. Subjects performed a 10-km race on the same course before and after the intervention period. Training was quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity, <VT), zone 2 (moderate intensity, between VT and RCT), and zone 3 (high intensity, >RCT). The contribution of total training time in each zone was controlled to have more low-intensity training in PET (±77/3/20), whereas for BThET the distribution was higher in zone 2 and lower in zone 1 (±46/35/19).

Results:

Both groups significantly improved their 10K time (39min18s ± 4min54s vs 37min19s ± 4min42s, P < .0001 for PET; 39min24s ± 3min54s vs 38min0s ± 4min24s, P < .001 for BThET). Improvements were 5.0% vs 3.6%, ~41 s difference at post-training-intervention. This difference was not significant. However, a subset analysis comparing the 12 runners who actually performed the most PET (n = 6) and BThET (n = 16) distributions showed greater improvement in PET by 1.29 standardized Cohen effect-size units (90% CI 0.31–2.27, P = .038).

Conclusions:

Polarized training can stimulate greater training effects than between-thresholds training in recreational runners.

Restricted access

Iker Muñoz, Roberto Cejuela, Stephen Seiler, Eneko Larumbe and Jonathan Esteve-Lanao

Purpose:

To describe training loads during an Ironman training program based on intensity zones and observe training–performance relationships.

Methods:

Nine triathletes completed a program with the same periodization model aiming at participation in the same Ironman event. Before and during the study, subjects performed ramp-protocol tests, running, and cycling to determine aerobic (AeT) and anaerobic thresholds (AnT) through gas-exchange analysis. For swimming, subjects performed a graded lactate test to determine AeT and AnT. Training was subsequently controlled by heart rate (HR) during each training session over 18 wk. Training and the competition were both quantified based on the cumulative time spent in 3 intensity zones: zone 1 (low intensity; <AeT), zone 2 (moderate intensity; between AeT and AnT), and zone 3 (high intensity; >AnT).

Results:

Most of training time was spent in zone 1 (68% ± 14%), whereas the Ironman competition was primarily performed in zone 2 (59% ± 22%). Significant inverse correlations were found between both total training time and training time in zone 1 vs performance time in competition (r = –.69 and –.92, respectively). In contrast, there was a moderate positive correlation between total training time in zone 2 and performance time in competition (r = .53) and a strong positive correlation between percentage of total training time in zone 2 and performance time in competition (r = .94).

Conclusions:

While athletes perform with HR mainly in zone 2, better performances are associated with more training time spent in zone 1. A high amount of cycling training in zone 2 may contribute to poorer overall performance.

Restricted access

Phillip Bellinger, Blayne Arnold and Clare Minahan

, heart rate [HR] or VO 2 ), 8 , 9 or by how the training is perceived (ie, rating of perceived exertion [RPE]). 10 To further guide training prescription and monitoring, training-intensity zones have been employed, and although there is not yet a consensus on the most appropriate training zone model, models

Restricted access

Cruz Hogan, Martyn J. Binnie, Matthew Doyle, Leanne Lester and Peter Peeling

Flat-water sprint kayak athletes require highly developed aerobic and anaerobic energy systems to be competitive across each of the 200-, 500-, and 1000-m Olympic distance events. 1 – 3 Consequently, the classification of training intensity into well-defined training zones has become common

Restricted access

Vincenzo Manzi, Antonio Bovenzi, Carlo Castagna, Paola Sinibaldi Salimei, Maurizio Volterrani and Ferdinando Iellamo

Purpose:

To assess the distribution of exercise intensity in long-distance recreational athletes (LDRs) preparing for a marathon and to test the hypothesis that individual perception of effort could provide training responses similar to those provided by standardized training methodologies.

Methods:

Seven LDRs (age 36.5 ± 3.8 y) were followed during a 5-mo training period culminating with a city marathon. Heart rate at 2.0 and 4.0 mmol/L and maximal heart rate were used to establish 3 intensity training zones. Internal training load (TL) was assessed by training zones and TRIMPi methods. These were compared with the session-rating-of-perceived-exertion (RPE) method.

Results:

Total time spent in zone 1 was higher than in zones 2 and 3 (76.3% ± 6.4%, 17.3% ± 5.8%, and 6.3% ± 0.9%, respectively; P = .000 for both, ES = 0.98, ES = 0.99). TL quantified by session-RPE provided the same result. The comparison between session-RPE and training-zones-based methods showed no significant difference at the lowest intensity (P = .07, ES = 0.25). A significant correlation was observed between TL RPE and TL TRIMPi at both individual and group levels (r = .79, P < .001). There was a significant correlation between total time spent in zone 1 and the improvement at the running speed of 2 mmol/L (r = .88, P < .001). A negative correlation was found between running speed at 2 mmol/L and the time needed to complete the marathon (r = –.83, P < .001).

Conclusions:

These findings suggest that in recreational LDRs most of the training time is spent at low intensity and that this is associated with improved performances. Session-RPE is an easy-to-use training method that provides responses similar to those obtained with standardized training methodologies.

Restricted access

Louise Croft, Suzanne Dybrus, John Lenton and Victoria Goosey-Tolfrey

Purpose:

To examine the physiological profiles of wheelchair basketball and tennis and specifically to: (a) identify if there are differences in the physiological profiles of wheelchair basketball and tennis players of a similar playing standard, (b) to determine whether the competitive physiological demands of these sports differed (c) and to explore the relationship between the blood lactate [Bla] response to exercise and to identify the sport specific heart rate (HR) training zones.

Methods:

Six elite athletes (4 male, 2 female) from each sport performed a submaximal and VO2 peak test in their sport specific wheelchair. Heart rate, VO2, and [Bla] were measured. Heart rate was monitored during international competitions and VO2 was calculated from this using linear regression equations. Individual HR training zones were identified from the [Bla–] profile and time spent within these zones was calculated for each match.

Results:

Despite no differences in the laboratory assessment of HRpeak, the VO2peak was higher for the basketball players when compared with the tennis players (2.98 ± 0.91 vs 2.06 ± 0.71; P = .08). Average match HR (163 ± 11 vs 146 ± 16 beats-min–1; P = .06) and average VO2 (2.26 ± 0.06 vs 1.36 ± 0.42 L-min-1; P = .02) were higher during actual playing time of basketball when compared with whole tennis play. Consequently, differences in the time spent in the different training zones within and between the two sports existed (P < .05).

Conclusions:

Wheelchair basketball requires predominately high-intensity training, whereas tennis training requires training across the exercise intensity spectrum.