Search Results

You are looking at 1 - 10 of 151 items for :

  • "triathlon" x
Clear All
Restricted access

Aaron Coutts, Peter Reaburn, Kerry Mummery and Mark Holmes

The purpose of this study was to examine the effect of prior glycerol loading on competitive Olympic distance triathlon performance (ODT) in high ambient temperatures. Ten (3 female and 7 male) well-trained triathletes (VO2max = 58.4 ±2.4 ml-kg−1 min−1; best ODT time = 131.5 ± 2.6 min) completed 2 ODTs (1.5-km swim, 40-km bicycle, 10-km run) in a randomly assigned (placebo/ glycerol) double-blind study conducted 2 weeks apart. The wet-bulb globe temperature (outdoors) was 30.5 + 0.5 °C (relative humidity: 46.3 ± 1.1%; hot) and 25.4 + 0.2 °C (relative humidity: 51.7 ± 2.4%; warm) for day 1 and day 2, respectively. The glycerol solution consisted of 1.2 g of glycerol per kilogram of body mass (BM) and 25 ml of a 0.75 g · kg−1 BM carbohydrate solution (Gatorade®) and was consumed over a 60-min period, 2 hours prior to each ODT. Measures of performance (ODT time), fluid retention, urine output, blood plasma volume changes, and sweat loss were obtained prior to and during the ODT in both the glycerol and placebo conditions. Following glycerol loading, the increase in ODT completion time between the hot and warm conditions was significantly less than the placebo group (placebo 11:40 min vs. glycerol 1:47 min; p < .05). The majority of the performance improvement occurred during the final 10-km run leg of ODT on the hot day. Hyperhydration occurred as a consequence of a reduced diuresis (p < .05) and a subsequent increase in fluid retention (p < .05). No significant differences were observed in sweat loss between the glycerol and placebo conditions. Plasma volume expansion during the loading period was significantly greater (p < .05) on the hot day when glycerol appeared to attenuate the performance decrement in the heat. The present results suggest that glycerol hyperhydration prior to ODT in high ambient temperatures may provide some protection against the negative performance effects of competing in the heat.

Restricted access

Amy Silder, Kyle Gleason and Darryl G. Thelen

We investigated how varying seat tube angle (STA) and hand position affect muscle kinematics and activation patterns during cycling in order to better understand how triathlon-specific bike geometries might mitigate the biomechanical challenges associated with the bike-to-run transition. Whole body motion and lower extremity muscle activities were recorded from 14 triathletes during a series of cycling and treadmill running trials. A total of nine cycling trials were conducted in three hand positions (aero, drops, hoods) and at three STAs (73°, 76°, 79°). Participants also ran on a treadmill at 80, 90, and 100% of their 10-km triathlon race pace. Compared with cycling, running necessitated significantly longer peak musculotendon lengths from the uniarticular hip flexors, knee extensors, ankle plantar flexors and the biarticular hamstrings, rectus femoris, and gastrocnemius muscles. Running also involved significantly longer periods of active muscle lengthening from the quadriceps and ankle plantar flexors. During cycling, increasing the STA alone had no affect on muscle kinematics but did induce significantly greater rectus femoris activity during the upstroke of the crank cycle. Increasing hip extension by varying the hand position induced an increase in hamstring muscle activity, and moved the operating lengths of the uniarticular hip flexor and extensor muscles slightly closer to those seen during running. These combined changes in muscle kinematics and coordination could potentially contribute to the improved running performances that have been previously observed immediately after cycling on a triathlon-specific bicycle.

Restricted access

Marcus Colon, Andrew Hodgson, Eimear Donlon and James E.J. Murphy

around 4 years of biological age. While, Ludlow et al. ( 2008 ) and Savela et al. ( 2013 ) have indicated that the relationship is an inverted U curve where moderate-physical activity has beneficial effects on TL compared with both low- and high-intensity exercises. Triathlon is an endurance multisport

Restricted access

Sunita Potgieter, Hattie H. Wright and Carine Smith

supplementation to improve performance ( Bell et al., 1998 ; Bridge & Jones, 2006 ; Christensen et al., 2017 ; De Morree et al., 2014 ; Glaister et al., 2016 ; Meeusen et al., 2013 ; Stadheim et al., 2013 ). In terms of triathlon specifically, similar use of caffeine has been reported. An astounding 89% of

Restricted access

Matthew Lamont and Sheranne Fairley

one day after major Ironman triathlon events in Australia and is run by members of a distinct subworld within the broader social world of Australian triathletes. The Beer Mile occurs on the periphery of Ironman triathlon events and is unsanctioned by event organizers. This paper examines the language

Restricted access

Gregoire P. Millet, David J. Bentley and Veronica E. Vleck

The relationships between sport sciences and sports are complex and changeable, and it is not clear how they reciprocally influence each other. By looking at the relationship between sport sciences and the “new” (~30-year-old) sport of triathlon, together with changes in scientific fields or topics that have occurred between 1984 and 2006 (278 publications), one observes that the change in the sport itself (eg, distance of the events, wetsuit, and drafting) can influence the specific focus of investigation. The sport-scientific fraternity has successfully used triathlon as a model of prolonged strenuous competition to investigate acute physiological adaptations and trauma, as support for better understanding cross-training effects, and, more recently, as a competitive sport with specific demands and physiological features. This commentary discusses the evolution of the scientific study of triathlon and how the development of the sport has affected the nature of scientific investigation directly related to triathlon and endurance sport in general.

Restricted access

Robert McMurray, David K. Williams and Claudio L. Battaglini

Seven highly trained male triathletes, aged 18 to 35 years, were tested during two simulated Olympic distance triathlons to determine whether run performance was enhanced when consuming 177 ml of water at 8, 16, 24, and 32 kilometers (Early Trials) compared to consumption at 10, 20, 30, and 40 kilometers (Late Trials), during the cycling segment of the triathlon. Swim times for 1500 m were similar between trials; 40-km cycling times were ~10 s faster during the Late trials; however, 10-km run times were faster during the Early Trials (P < 0.02). No significant differences between run trials were found for the rating of perceived exertion, oxygen uptake, heart rate, and change in urine specific gravity. It was concluded that the consumption of fluids earlier in the cycle phase of the Olympic distance triathlon benefits the run and overall performance time.

Restricted access

Paul B. Laursen, Greig Watson, Chris R. Abbiss, Bradley A. Wall and Kazunori Nosaka

Purpose:

To monitor the hydration, core temperature, and speed (pace) of a triathlete performing an Ironman triathlon.

Methods:

A 35-year-old experienced male triathlete participated in the Western Australian Ironman triathlon on December 1, 2006. The participant was monitored for blood Na+ concentration before the race (PRE), at the transitions (T1 and T2), halfway through the run (R21), and after the race (POST; 2hPOST). Core body temperature (T ; pill telemetry) was recorded continuously, and running speed (s3 stride sensor) was measured during the run.

Results:

The participant completed the race in 11 h 38 min, in hot conditions (26.6 ± 5.8°C; 42 ± 19% rel. humidity). His Tc increased from 37.0 to 38.6°C during the 57-min swim, and averaged 38.4°C during the 335-min bike (33.5 km·h-1). After running at 12.4 km·h-1 for 50 min in the heat (33.1°C), T increased to 39.4°C, before slowing to 10.0 km·h-1 for 20 min. T decreased to 38.9°C until he experienced severe leg cramps, after which speed diminished to 6 km·h-1 and T fell to 38.0°C. The athlete’s blood Na+ was constant from PRE to T2 (139-140 mEq·L-1, but fell to 131 mEq·L-1 at R21, 133 mEq·L-1 at POST, and 128 mEq·L-1at 2hPOST The athlete consumed 9.25 L of fuid from PRE to T2, 6.25 L from T2 to POST, and lost 2% of his body mass, indicating sweat losses greater than 15.5 L.

Conclusion:

This athlete slowed during the run phase following attainment of a critically high T and experienced an unusually rapid reduction in blood Na+ that preceded cramping, despite presenting with signs of dehydration.

Restricted access

Catriona A. Burdon, Nathan A. Johnson, Phillip G. Chapman, Ahmad Munir Che Muhamed and Helen T. O’Connor

Purpose:

The aim of this study was to measure the effect of environmental conditions and aid-station beverage-cooling practices on the temperature of competitor beverages.

Methods:

Environmental and beverage temperatures were measured at three cycling and two run course aid stations at the 2010 Langkawi, Malaysia (MA), and Port Macquarie, Australia (AU), Ironman triathlon events. To measure the specific effect of radiant temperature, additional fluid-filled (600 ml) drink bottles (n = 12) were cooled overnight (C) and then placed in direct sun (n = 6) or shade (n = 6) near to a cycle aid station at AU.

Results:

During both events, beverage temperature increased over time (p < .05) as environmental conditions, particularly radiant temperature increased (p < .05). Mean beverage temperature ranged between 14–26°C and during both events was above the palatable range (15–22°C) for extended periods. At AU, bottles placed in direct sunlight heated faster (6.9 ± 2.3 °C·h−1) than those in the shade (4.8 ± 1.1°C·h−1, p = .05).

Conclusion:

Simple changes to Ironman aidstation practices, including shade and chilling beverages with ice, result in the provision of cooler beverages. Future studies should investigate whether provision of cool beverages at prolonged endurance events influences heat-illness incidence, beverage-consumption patterns, and competitor performance.

Restricted access

Olivier Galy, Olivier Hue, Karim Chamari, Alain Boussana, Anis Chaouachi and Christian Préfaut

Purpose:

To study the relationship between performance and exercise-induced arterial hypoxemia (EIAH), 5 internationally ranked (INT) and 8 regionally ranked (REG) triathletes performed cycle-run successions (CR) and control runs (R) in competitionlike conditions: at ≍75% VO2max.

Methods:

Ventilatory parameters and oxyhemoglo-bin saturation (SpO2) data were collected continuously. Arteriolized partial pressure in O2 (PaO2) and alveolar ventilation (VA) were measured before and after cycling (CRcycle), the successive run (CRrun), and R. Pulmonary diffusing capacity (DLco) was measured at rest and 10 minutes post-CR. Training and short-distance triathlon data were collected.

Results:

INT showed signifcantly greater experience than REG in competition years (P > .05), training regimen (P > .05), and swimming (P > .05), and cycling (P > .05) volumes; running showed a trend (P < .06). Cycling, running, and total triathlon performances were significantly higher in INT than REG (P > .01). SpO2 during CR dropped significantly more in INT than in REG. Both groups showed significant inverse correlations between the magnitude of the SpO2 change from CRcy-cle to CRrun and the triathlon running time (r = −0.784; P < .05 and r = −0.699; P < .05; respectively). When compared with CRcycle, PaO2 significantly decreased and VA significantly increased after CRrun and R in both groups (P < .01). DLco significantly dropped between pre- and postexercise in CR and R with no between-group difference (P < .05).

Conclusions:

EIAH was aggravated in higher performers during simulated cycle-run segments, related to longer experience and heavier training regimens. Possibly, relative hypoventilation caused this aggravated EIAH in INT, although pulmonary diffusion limitation was observed in both groups. Beyond EIAH severity, the magnitude of SpO2 variations during the cycle-run transition may affect triathlon running performance.