Search Results

You are looking at 1 - 10 of 70 items for :

  • "triceps surae" x
Clear All
Restricted access

Ashley Goodman and Kevin A. Zwetsloot

Context:

Exercise-associated muscle cramping (EAMC) is difficult to induce experimentally.

Purpose:

T o assess the reliability of a maximum voluntary contraction (MVC) procedure for inducement of a muscle cramp.

Participants:

Seventy-four healthy and physically active participants (23 ± 8 years of age; 49 males and 25 females); 63 who had previously experienced EAMC.

Main Outcome Measure:

Each participant’s triceps surae musculature was placed in a shortened and unloaded position. Participants were instructed to maximally contract the triceps surae musculature with the intent to induce a cramp within 60 seconds.

Results:

Cramping was induced in 31% of participants within 60 seconds, and 97% of participants who experienced cramping during the initial session and who returned for two subsequent testing sessions at one-week intervals reproduced cramping with the procedure.

Conclusions:

The MVC procedure consistently induced cramping in a subset of 18 cramp-prone participants during multiple testing sessions, which suggests that it may have value as a screening tool for identification of athletes with a predisposition for EAMC.

Restricted access

Mikael Scohier, Dominique De Jaeger and Benedicte Schepens

The purpose of this study was to mechanically evoke a triceps surae stretch reflex during the swing phase of running, to study its within-the-step phase dependency. Seven participants ran on a treadmill at 2.8 m·s−1 wearing an exoskeleton capable of evoking a sudden ankle dorsiflexion. We measured the electromyographic activity of the soleus, medial and lateral gastrocnemii just after the perturbation to evaluate the triceps surae stretch reflex. Similar perturbations were also delivered at rest. Our results showed that the stretch reflex was suppressed during the swing phase of running, except in late swing where a late reflex response was observed. At rest, all triceps surae muscles showed an early reflex response to stretch. Our findings suggest that the triceps surae short/medium-latency stretch reflex cannot be evoked during swing phase and thus cannot contribute to the control of the locomotor pattern after aperturbation during this phase.

Restricted access

Crayton L. Moss and Scott Grimmer

The purpose of this study was to determine whether twitch contractile properties and strength of the triceps surae could be altered by 8 weeks of low-repetition or high-repetition isotonic exercise. Subjects were randomly assigned to either the low- or high-repetition group. Before- and after-training measurements were recorded for strength and contractile properties. The contractile variables of the muscle twitch were latency, time to peak force, peak force, half-contraction time, and half-relaxation time. Strength measurements were determined utilizing a one repetition maximal (1-RM) heel-raise testing device. A two-way ANOVA with repeated measures was used to test the effect of training on each variable. Both groups showed a significant increase in 1-RM and half-relaxation time and a decrease in electrical stimulation current after the 8-week training period. It was concluded that if high-repetition exercises develop slow-twitch Type I muscle fibers and low-repetition exercises develop fast-twitch Type II fibers, training programs must be designed specifically according to the desired outcome.

Restricted access

Saira Chaudhry, Dylan Morrissey, Roger C. Woledge, Dan L. Bader and Hazel R.C. Screen

Triceps surae eccentric exercise is more effective than concentric exercise for treating Achilles tendinopathy, however the mechanisms underpinning these effects are unclear. This study compared the biomechanical characteristics of eccentric and concentric exercises to identify differences in the tendon load response. Eleven healthy volunteers performed eccentric and concentric exercises on a force plate, with ultrasonography, motion tracking, and EMG applied to measure Achilles tendon force, lower limb movement, and leg muscle activation. Tendon length was ultrasonographically tracked and quantified using a novel algorithm. The Fourier transform of the ground reaction force was also calculated to investigate for tremor, or perturbations. Tendon stiffness and extension did not vary between exercise types (P = .43). However, tendon perturbations were significantly higher during eccentric than concentric exercises (25%–40% higher, P = .02). Furthermore, perturbations during eccentric exercises were found to be negatively correlated with the tendon stiffness (R 2 = .59). The particular efficacy of eccentric exercise does not appear to result from variation in tendon stiffness or extension within a given session. However, varied perturbation magnitude may have a role in mediating the observed clinical effects. This property is subject-specific, with the source and clinical timecourse of such perturbations requiring further research.

Restricted access

James R. Debenham, William I. Gibson, Mervyn J. Travers, Amity C. Campbell and Garry T. Allison

Context:

Eccentric exercises are increasingly being used to treat lower-limb musculoskeletal conditions such as Achilles tendinopathy. Despite widespread clinical application and documented efficacy, mechanisms underpinning clinical benefit remain unclear. Positive adaptations in motor performance are a potential mechanism.

Objective:

To investigate how an eccentric loading intervention influences measures of stretch-shortening-cycle (SSC) behavior during a hopping task.

Design:

Within-subjects repeated-measures observational study.

Setting:

University motion-analysis laboratory.

Participants:

Healthy adults.

Interventions:

A single intervention of 5 sets of 10 eccentric plantar-flexion contractions at 6 repetitions maximum using a commercial seated calf-raise machine.

Main Outcome Measures:

Lower-limb stiffness, sagittal-plane ankle kinematics, and temporal muscle activity of the agonist (soleus) and antagonist (tibialis anterior) muscles, measured during submaximal hopping on a custom-built sledge-jump system.

Results:

Eccentric loading altered ankle kinematics during submaximal hopping; peak angle shifted to a less dorsiflexed position by 2.9° and ankle angle precontact shifted by 4.4° (P < .001). Lower-limb stiffness increased from 5.9 to 6.8 N/m (P < .001), while surface EMG measures of soleus occurred 14–44% earlier (P < .001) after the loading intervention.

Conclusions:

These findings suggest that eccentric loading alters SSC behavior in a manner reflective of improved motor performance. Decreased ankle excursion, increased lower-limb stiffness, and alterations in motor control may represent a positive adaptive response to eccentric loading. These findings support the theory that mechanisms underpinning eccentric loading for tendinopathy may in part be due to improved “buffering” of the tendon by the neuromuscular system.

Restricted access

Phillip O. Burr, Timothy J. Demchak, Mitchell L. Cordova, Christopher D. Ingersoll and Marcus B. Stone

Context:

It has been suggested that to obtain optimal physiological effects of heating, musculoskeletal temperature (TEMP) should be elevated 3 °C above baseline and maintained for at least 5 min.

Objective:

To identify a multi-intensity ultrasound protocol that will achieve optimal heating.

Design:

1 × 2 between-subjects.

Setting:

Sports-injury research laboratory.

Participants:

20 healthy volunteers.

Interventions:

A 2.5-min treatment at 2.4 W/cm2 immediately followed by a 7.5-min treatment at 1.0 W/cm2 (T1) and a 10-min treatment at 1.5 W/cm2 (T2).

Outcome Measures:

TEMP change during the first 2.5 min of ultrasound treatment (°C), time the TEMP was ≥3 °C above baseline during and after the treatment.

Results:

T1 increased TEMP during the first 2.5 min of the ultrasound treatment (3.22 ± 1.25 °C) more than T2 did (1.68 ± 0.72 °C). No difference was found for the remaining measures.

Conclusions:

The multi-intensity protocol (2.4 W/cm2 and 1.0 W/cm2) did not result in optimal heating.

Restricted access

Atsuki Fukutani and Toshiyuki Kurihara

Recent studies have reported that resistance training increases the cross-sectional areas (CSAs) of tendons; however, this finding has not been consistently observed across different studies. If tendon CSA increases through resistance training, resistance-trained individuals should have larger tendon CSAs as compared with untrained individuals. Therefore, in the current study, we aimed to investigate whether resistance training increases tendon CSAs by comparing resistance-trained and untrained individuals. Sixteen males, who were either body builders or rugby players, were recruited as the training group, and 11 males, who did not participate in regular resistance training, were recruited into the control group. Tendon CSAs and muscle volumes of the triceps brachii, quadriceps femoris, and triceps surae were calculated from images obtained by using magnetic resonance imaging. The volumes of the 3 muscles were significantly higher in the training group than in the control group (P < .001 for all muscles). However, a significant difference in tendon CSAs was found only for the distal portion of the triceps surae tendon (P = .041). These findings indicate that tendon CSA is not associated with muscle volume, suggesting that resistance training does not increase tendon CSA.

Free access

Alissa C. Rhode, Lauren M. Lavelle and David C. Berry

compared ReBound with MHPs. • All studies agreed. ReBound does not achieve vigorous (4°C) heating effects during a 30-minute treatment to the triceps surae muscle (depth = 1 and 3 cm). Studies agree that the heat generated by ReBound dissipates slower than ( P  < .001) or at a similar rate as PSWD and

Restricted access

Thomas Cattagni, Vincent Gremeaux and Romuald Lepers

, height = 448 pixels, slice thickness = 5 mm, slice increment = 5 mm, and number of slices = 162. Data were transferred in DICOM format (.DCM file). For both legs, the triceps surae, tibialis anterior, quadriceps, and other thigh muscles (including knee flexor and adductor muscles, and sartorius) were

Restricted access

William H. Clark and Jason R. Franz

The triceps surae muscle–tendon units are important in governing walking performance, acting to regulate mechanical behavior of the ankle joint through the interaction between active muscle and passive elastic structures. 1 – 3 Ankle joint quasi-stiffness (k A ), the slope of the relation between