Search Results

You are looking at 1 - 10 of 37 items for :

  • "trunk kinematics" x
Clear All
Restricted access

James J. Hannigan, Louis R. Osternig and Li-Shan Chou

PFPS compared to males, 27 and display different kinematic patterns compared to males while injured. 28 To date, no single study has investigated the relationship between hip strength and hip, pelvis, and trunk kinematics in both sexes independently. A better understanding of the basic relationship

Restricted access

Aimée C. Smith, Jonathan R. Roberts, Eric S. Wallace, Pui Kong and Stephanie E. Forrester

Two-dimensional methods have been used to compute trunk kinematic variables (flexion/extension, lateral bend, axial rotation) and X-factor (difference in axial rotation between trunk and pelvis) during the golf swing. Recent X-factor studies advocated three-dimensional (3D) analysis due to the errors associated with two-dimensional (2D) methods, but this has not been investigated for all trunk kinematic variables. The purpose of this study was to compare trunk kinematic variables and X-factor calculated by 2D and 3D methods to examine how different approaches influenced their profiles during the swing. Trunk kinematic variables and X-factor were calculated for golfers from vectors projected onto the global laboratory planes and from 3D segment angles. Trunk kinematic variable profiles were similar in shape; however, there were statistically significant differences in trunk flexion (–6.5 ± 3.6°) at top of backswing and trunk right-side lateral bend (8.7 ± 2.9°) at impact. Differences between 2D and 3D X-factor (approximately 16°) could largely be explained by projection errors introduced to the 2D analysis through flexion and lateral bend of the trunk and pelvis segments. The results support the need to use a 3D method for kinematic data calculation to accurately analyze the golf swing.

Restricted access

Susana Meireles, Neil D. Reeves, Richard K. Jones, Colin R. Smith, Darryl G. Thelen and Ilse Jonkers

knee joint loading and trunk kinematics during stair ascent and descent in individuals with medial knee OA against healthy subjects during step-over-step at controlled speed. We hypothesize that OA patients will present lower knee loading than healthy subjects trying to avoid pain. The second objective

Restricted access

Juliane Müller, Steffen Müller, Josefine Stoll, Michael Rector, Heiner Baur and Frank Mayer

Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk’s mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis.

Restricted access

Max C. Stuelcken, René E.D. Ferdinands and Peter J. Sinclair

This study aimed to investigate the bowling techniques of female fast bowlers and identify any association between a history of low back pain (LBP) and the movement patterns of the thorax relative to the pelvis during the delivery stride of the bowling action. Three-dimensional kinematic data were collected from 26 elite Australian female fast bowlers using an eight-camera Vicon motion analysis system. Nineteen bowlers used a mixed action, 6 bowlers used a semiopen action, and 1 bowler used a side-on action. Fourteen bowlers had a history of LBP. Eight of these 14 bowlers used a mixed action, and bowlers with more shoulder counterrotation were no more likely to have a history of LBP. Bowlers with a history of LBP positioned the thorax in more left lateral flexion relative to the pelvis between 73–79% of the delivery stride, and moved the thorax through a significantly greater range of lateral flexion relative to the pelvis during the delivery stride compared with bowlers with no history of LBP. This information will give coaches and support staff a better understanding of female bowling technique and may facilitate better screening practices for elite female cricketers.

Restricted access

Yumeng Li, Rumit S. Kakar, Marika A. Walker, Li Guan and Kathy J. Simpson

The upper trunk–pelvic coordination patterns used in running are not well understood. The purposes of this study are to (1) test the running speed effect on the upper trunk–pelvis axial rotation coordination and (2) present a step-by-step guide of the relative Fourier phase algorithm, as well as some further issues to consider. A total of 20 healthy young adults were tested under 3 treadmill running speeds using a 3-dimensional motion capture system. The upper trunk and pelvic segmental angles in axial rotation were calculated, and the coordination was quantified using the relative Fourier phase method. Results of multilevel modeling indicated that running speed did not significantly contribute to the changes in coordination in a linear pattern. A qualitative template analysis suggested that participants displayed different change patterns of coordination as running speed increased. Participants did not significantly change the upper trunk and pelvis coordination mode in a linear pattern at higher running speeds, possibly because they employed different motion strategies to achieve higher running speeds and thus displayed large interparticipant variations. For most of our runners, running at a speed deviated from the preferred speed could alter the upper trunk–pelvis coordination. Future studies are still needed to better understand the influence of altered coordination on running performance and injuries.

Restricted access

Carolyn A. Duncan, Scott N. MacKinnon and Wayne J. Albert

The purpose of this study was to examine how wave-induced platform motion effects postural stability when handling loads. Twelve participants (9 male, 3 female) performed a sagittal lifting/lowering task with a 10 kg load in different sea conditions off the coast of Halifax, Nova Scotia, Canada. Trunk kinematics and foot center of force were measured using the Lumbar Motion Monitor and F-Scan foot pressure system respectively. During motion conditions, significant decreases in trunk velocities were accompanied by significant increases in individual foot center of pressure velocities. These results suggest that during lifting and lowering loads in moving environments, the reaction to the wave-induced postural disturbance is accompanied by a decrease in performance speed so that the task can be performed more cautiously to optimize stability.

Restricted access

Giorgos Sofianidis, Vassilia Hatzitaki, Stella Douka and Giorgos Grouios

This preliminary study examined the effect of a 10-wk traditional Greek dance program on static and dynamic balance indices in healthy elderly adults. Twenty-six community-dwelling older adults were randomly assigned to either an intervention group who took supervised Greek traditional dance classes for 10 wk (1 hr, 2 sessions/week, n = 14), or a control group (n = 12). Balance was assessed pre- and postintervention by recording the center-of-pressure (COP) variations and trunk kinematics during performance of the Sharpened-Romberg test, 1-leg (OL) stance, and dynamic weight shifting (WS). After practice, the dance group significantly decreased COP displacement and trunk sway in OL stance. A significant increase in the range of trunk rotation was noted during performance of dynamic WS in the sagittal and frontal planes. These findings support the use of traditional dance as an effective means of physical activity for improving static and dynamic balance control in the elderly.

Restricted access

Eric Foch and Clare E. Milner

Proximal factors such as excessive frontal plane pelvis and trunk motion have been postulated to be biomechanical risk factors associated with iliotibial band syndrome. In addition, lateral core endurance deficiencies may be related to increased pelvis and trunk motion during running. The purpose of this cross-sectional investigation was to determine if differences in biomechanics during running, as well as lateral core endurance exist between female runners with previous iliotibial band syndrome and controls. Gait and lateral core endurance were assessed in 34 female runners (17 with previous iliotibial band syndrome). Multivariate analysis of variance was performed to assess between group difference in pelvis, trunk, hip, and knee variables of interest. Runners with previous iliotibial band syndrome exhibited similar peak trunk lateral flexion, peak contralateral pelvic drop, peak hip adduction, and peak external knee adduction moment compared with controls. In addition, trunk-pelvis coordination was similar between groups. Contrary to our hypotheses, both groups exhibited trunk ipsilateral flexion. Lateral core endurance was not different between groups. These findings provide the first frontal plane pelvis and trunk kinematic data set in female runners with previous iliotibial band syndrome. Frontal plane pelvis and trunk motion may not be associated with iliotibial band syndrome.

Restricted access

Elena Bergamini, Pélagie Guillon, Valentina Camomilla, Hélène Pillet, Wafa Skalli and Aurelio Cappozzo

The proper execution of the sprint start is crucial in determining the performance during a sprint race. In this respect, when moving from the crouch to the upright position, trunk kinematics is a key element. The purpose of this study was to validate the use of a trunk-mounted inertial measurement unit (IMU) in estimating the trunk inclination and angular velocity in the sagittal plane during the sprint start. In-laboratory sprint starts were performed by five sprinters. The local acceleration and angular velocity components provided by the IMU were processed using an adaptive Kalman filter. The accuracy of the IMU inclination estimate and its consistency with trunk inclination were assessed using reference stereophotogrammetric measurements. A Bland-Altman analysis, carried out using parameters (minimum, maximum, and mean values) extracted from the time histories of the estimated variables, and curve similarity analysis (correlation coefficient > 0.99, root mean square difference < 7 deg) indicated the agreement between reference and IMU estimates, opening a promising scenario for an accurate in-field use of IMUs for sprint start performance assessment.