Search Results

You are looking at 1 - 10 of 842 items for :

Clear All
Restricted access

Britton W. Brewer, Adisa Haznadar, Dylan Katz, Judy L. Van Raalte and Albert J. Petitpas

effect ( McGowan, Pyne, Thompson, & Rattray, 2015 ). Physical warm-up activities can literally warm the muscles of athletes and prime the body systems involved in sport tasks that follow. Some physical warm-ups can also serve as a “microdose” of strength-and-conditioning exercise that can reduce the risk

Restricted access

Lee Taylor, Christopher J. Stevens, Heidi R. Thornton, Nick Poulos and Bryna C.R. Chrismas

, 4 – 7 large increases in T c during WRSS match play (eg,  T c  > 39°C) may limit physical performance. 1 A WRSS tournament day is typically characterized by 3 matches in close proximity (∼3 h between matches) and ∼20 to 30 minutes allocated for a team to warm-up prior to each match. 1 The warm-up

Restricted access

Olfa Turki, Wissem Dhahbi, Johnny Padulo, Riadh Khalifa, Sana Ridène, Khaled Alamri, Mirjana Milić, Sabri Gueid and Karim Chamari

The athletic warm-up consists of a set of low- to moderate-intensity exercises designed to increase muscle temperature, cellular metabolism, and range of motion 1 to help players reach their optimum performance during sporting activities 2 and to mitigate the risk of injury. 3 Although past

Restricted access

Ben C. Sporer, Anita Cote and Gordon Sleivert

Purpose:

The purpose of this project was to observe current warm-up practices in snowboard athletes and evaluate their physiological impact before competition.

Methods:

An observational design was used to monitor 4 athletes (2 female) at an Open National Snowboard Cross Championships. Activity patterns, core temperature, heart rate (HR), and time between warm-up and competition were measured. Athlete ratings of thermal comfort (TC) and thermal sensation (TS) were recorded before competition.

Results:

Significant barriers and challenges to an optimal warm-up included delays, environment, and logistics. Time gaps between structured warm-up and competition start time were in excess of 1 h (median = 68.8 min). Median average HR for 10 min (HR10) did not exceed 120 beats/min in the hour preceding competition, suggesting a suboptimal warmup intensity. Athletes rated their TC between comfortable and slightly uncomfortable and TS as neutral to slightly warm before the start of qualifications and finals.

Conclusions:

The observations of this project suggest significant gaps in current warm-up strategies used in snowboarding. These include inadequate general aerobic warm-up (based on intensity and duration), excessive time between warm-up and competition, and lack of a consistent and structured warm-up protocol. Future work is needed to evaluate the effectiveness of different warm-up strategies on muscle temperature and performance while determining the optimal length of time between warm-up and competition.

Restricted access

Olfa Turki, Wissem Dhahbi, Sabri Gueid, Sami Hmaied, Marouen Souaifi and Riadh Khalifa

and soccer performance. 4 A dynamic warm-up has been shown to be a critical component of soccer training and competition. 5 A warm-up is defined as a set of preparatory exercises aimed at increasing the preparedness for the subsequent sporting activity in order to maximize performance and decrease

Restricted access

Christian Cook, Danny Holdcroft, Scott Drawer and Liam P. Kilduff

Purpose:

To investigate how different warm-ups influenced subsequent sled-pull sprint performance in Olympic-level bob-skeleton athletes as part of their preparation for the 2010 Winter Olympics.

Methods:

Three female and 3 male athletes performed 5 different randomized warm-ups of differing intensities, durations, and timing relative to subsequent testing, each 2 days apart, all repeated twice. After warm-ups, testing on a sledpull sprint over 20 m, 3 repeats 3 min apart, took place.

Results:

Performance testing showed improvement (P < .001, ES > 1.2) with both increasing intensity of warm-up and closeness of completion to testing, with 20-m sled sprinting being 0.1–0.25 s faster in higher-intensity protocols performed near testing In addition, supplementing the warm-ups by wearing of a light survival coat resulted in further performance improvement (P = .000, ES 1.8).

Conclusions:

Changing timing and intensity of warm-up and using an ancillary passive heat-retention device improved sprint performance in Olympic-level bob-skeleton athletes. Subsequent adoption of these on the competitive circuit was associated with a seasonal improvement in push times and was ultimately implemented in the 2010 Winter Olympics.

Restricted access

Courtney J. McGowan, David B. Pyne, Kevin G. Thompson and Ben Rattray

Purpose:

Targeted passive heating and completion of dryland-based activation exercises within the warm-up can enhance sprint freestyle performance. The authors investigated if these interventions would also elicit improvements in sprint breaststroke swimming performance.

Methods:

Ten national and internationally competitive swimmers (~805 FINA (Fédération internationale de natation) 2014 scoring points; 6 men, mean ± SD 20 ± 1 y; 4 women, 21 ± 3 y) completed a standardized pool warm-up (1550 m) followed by a 30-min transition phase and a 100-m breaststroke time trial. In the transition phase, swimmers wore a conventional tracksuit and remained seated (control) or wore tracksuit pants with integrated heating elements and performed a 5-min dryland-based exercise routine (combo) in a crossover design.

Results:

Performance in the 100-m time trial (control: 68.6 ± 4.0 s, combo: 68.4 ± 3.9 s, P = .55) and start times to 15 m (control: 7.3 ± 0.6 s; combo: 7.3 ± 0.6 s; P = .81) were not different between conditions. It was unclear (P = .36) whether combo (–0.12°C ± 0.19°C [mean ± 90% confidence limits]) elicited an improvement in core temperature maintenance in the transition phase compared with control (–0.31°C ± 0.19°C). Skin temperature immediately before commencement of the time trial was higher (by ~1°C, P = .01) within combo (30.13°C ± 0.88°C [mean ± SD]) compared with control (29.11°C ± 1.20°C). Lower-body power output was not different between conditions before the time trial.

Conclusions:

Targeted passive heating and completion of dryland-based activation exercises in the transition phase does not enhance sprint breaststroke performance despite eliciting elevated skin temperature immediately before time trial commencement.

Restricted access

Thomas Zochowski, Elizabeth Johnson and Gordon G. Sleivert

Context:

Warm-up before athletic competition might enhance performance by affecting various physiological parameters. There are few quantitative data available on physiological responses to the warm-up, and the data that have been reported are inconclusive. Similarly, it has been suggested that varying the recovery period after a standardized warm-up might affect subsequent performance.

Purpose:

To determine the effects of varying post-warm-up recovery time on a subsequent 200-m swimming time trial.

Methods:

Ten national-caliber swimmers (5 male, 5 female) each swam a 1500-m warm-up and performed a 200-m time trial of their specialty stroke after either 10 or 45 min of passive recovery. Subjects completed 1 time trial in each condition separated by 1 wk in a counterbalanced order. Blood lactate and heart rate were measured immediately after warm-up and 3 min before, immediately after, and 3 min after the time trial. Rating of perceived exertion was measured immediately after the warm-up and time trial.

Results:

Time-trial performance was significantly improved after 10 min as opposed to 45 min recovery (136.80 ± 20.38 s vs 138.69 ± 20.32 s, P < .05). There were no significant differences between conditions for heart rate and blood lactate after the warm-up. Pre-time-trial heart rate, however, was higher in the 10-min than in the 45-min rest condition (109 ± 14 beats/min vs 94 ± 21 beats/min, P < .05).

Conclusions:

A post-warm-up recovery time of 10 min rather than 45 min is more beneficial to 200-m swimming time-trial performance.

Restricted access

Henrique P. Neiva, Mario C. Marques, Ricardo J. Fernandes, João L. Viana, Tiago M. Barbosa and Daniel A. Marinho

Purpose:

To investigate the effect of warm-up on 100-m swimming performance.

Methods:

Twenty competitive swimmers (with a training frequency of 8.0 ± 1.0 sessions/wk) performed 2 maximal 100-m freestyle trials on separate days, with and without prior warm-up, in a counterbalanced and randomized design. The warm-up distance totaled 1000 m and replicated the swimmers’ usual precompetition warm-up strategy. Performance (time), physiological (capillary blood lactate concentrations), psychophysiological (perceived exertion), and biomechanical variables (distance per stroke, stroke frequency, and stroke index) were assessed on both trials.

Results:

Performance in the 100-m was fastest in the warm-up condition (67.15 ± 5.60 vs 68.10 ± 5.14 s; P = .01), although 3 swimmers swam faster without warm-up. Critical to this was the 1st 50-m lap (32.10 ± 2.59 vs 32.78 ± 2.33 s; P < .01), where the swimmers presented higher distance per stroke (2.06 ± 0.19 vs. 1.98 ± 0.16 m; P = .04) and swimming efficiency compared with the no-warm-up condition (stroke index 3.46 ± 0.53 vs 3.14 ± 0.44 m2 · c−1 · s−1; P < .01). Notwithstanding this better stroke-kinematic pattern, blood lactate concentrations and perceived exertion were similar between trials.

Conclusions:

These results suggest that swimmers’ usual warm-up routines lead to faster 100-m freestyle swimming performance, a factor that appears to be related to better swimming efficiency in the 1st lap of the race. This study highlights the importance of performing swimming drills (for higher distance per stroke) before a maximal 100-m freestyle effort in similar groups of swimmers.

Restricted access

Sander P.M. Ganzevles, Arnold de Haan, Peter J. Beek, Hein A.M. Daanen and Martin J. Truijens

For training to be optimal, daily training load has to be adapted to the momentary status of the individual athlete, which is often difficult to establish. Therefore, the current study investigated the predictive value of heart-rate recovery (HRR) during a standardized warm-up for training load. Training load was quantified by the variation in heart rate during standardized training in competitive swimmers. Eight female and 5 male Dutch national-level swimmers participated in the study. They all performed 3 sessions consisting of a 300-m warm-up test and a 10 × 100-m training protocol. Both protocols were swum in front crawl at individually standardized velocities derived from an incremental step test. Velocity was related to 75% and 85% heart-rate reserve (% HRres) for the warm-up and training, respectively. Relative HRR during the first 60 s after the warm-up (HRRw-up) and differences between the actual and intended heart rate for the warm-up and the training (ΔHRw-up and ΔHRtr) were determined. No significant relationship between HRRw-up and ΔHRtr was found (F 1,37 = 2.96, P = .09, R 2 = .07, SEE = 4.65). There was considerable daily variation in ΔHRtr at a given swimming velocity (73–93% HRres). ΔHRw-up and ΔHRtr were clearly related (F 1,37 = 74.31, P < .001, R 2 = .67, SEE = 2.78). HRR after a standardized warm-up does not predict heart rate during a directly subsequent and standardized training session. Instead, heart rate during the warm-up protocol seems a promising alternative for coaches to make daily individual-specific adjustments to training programs.