Differential Eye Movements and Visual Contrast Acuity in National Collegiate Athletic Association Athletes

in International Journal of Athletic Therapy and Training
View More View Less
  • 1 University of Texas Southwestern Medical Center
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $76.00

1 year online subscription

USD  $101.00

Student 2 year online subscription

USD  $144.00

2 year online subscription

USD  $192.00

Though studies describe postconcussive changes in eye movements, there is a need for data describing baseline eye movements. The purpose of this study was to describe baseline eye movements and visual contrast acuity using the King-Devick (KD) Eye Tracking System and KD Visual Contrast Sensitivity Chart. Fewer total saccades were noted in soccer players than basketball players (soccer, 56.9 ± 14.3; basketball, 101.1 ± 41.3; p = .0005). No significant differences were noted for the number of saccades between sexes (males, 60.4 ± 20.3; females, 84.9 ± 41.8, p = .100) or in contrast acuity between all groups (p > .05). These results suggest the presence of sport-specific trends that may invalidate the comparison of postconcussion evaluation to generic baseline athlete eye movements.

Tejani and Vargas are with Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA. Middleton is with Physical Therapy, University of Texas Southwestern Medical Center, Dallas, TX, USA. Huang is with Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA.

Huang (mu.huang@utsouthwestern.edu) is corresponding author.
  • 1.

    Ventura R, Balcer L, Galetta S, Rucker JC. Ocular motor assessment in concussion: current status and future directions. J Neurol Sci. 2016;361:7986. PubMed ID: 26810521 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rizzo J, Hudson T, Dai W, et al. Rapid number naming in chronic concussion: eye movements in the King-Devick test. Ann Clin Transl Neurol. 2016;3(10):801811. PubMed ID: 27752515 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cifu D, Wares J, Hoke K, Wetzel P, Gitchel G, Carne W. Differential eye movements in mild traumatic brain injury versus normal controls. J Head Trauma Rehabil. 2015;30(1):2128. PubMed ID: 24695263 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rizzo J, Hudson T, Dai W, et al. Objectifying eye movements during rapid number naming: methodology for assessment of normative data for the King-Devick test. J Neurol Sci. 2016;362:232239. PubMed ID: 26944155 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Owsley C. Contrast Sensitivity. Ophthalmol Clin North Am. 2003;16(2):171177. PubMed ID: 12809156 doi:

  • 6.

    Richman J, Spaeth G, Wirostko B. Contrast sensitivity basics and a critique of currently available tests. J Cataract Refract Surg. 2013;39(7):11001106. PubMed ID: 23706926 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Jammal A, Ferreira B, Zangalli C, et al. Evaluation of contrast sensitivity in patients with advanced glaucoma: comparison of two tests. Br J Ophthalmol. 2020.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Little J, McCullough S, McClelland J, et al. Low-contrast acuity measurement: does it add value in the visual assessment of down syndrome and cerebral palsy populations. Invest Ophthalmol Vis Sci. 2013;54(1):251257. PubMed ID: 23233262 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Balcer L, Raynowska J, Nolan R. Validity of low-contrast letter acuity as a cisual performance outcome measure for multiple sclerosis. Mult Scler. 2017;23(5):734747. PubMed ID: 28206829 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Lin T, Rigby H, Adler J, et al. Abnormal visual contrast acuity in Parkinson’s disease. J Parkinsons Dis. 2015;5(1):125130. PubMed ID: 25425583 doi:

  • 11.

    Lenoir M, Crevits L, Goenthals M, Wildenbeest J, Musch E. Are better eye movements an advantage in ball games? a study of prosaccadic and antisaccadic eye movements. Percept Mot Skills. 2000;91(2):546552. PubMed ID: 11065317 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kerr Z, Chandran A, Nedimyer A, et al. Concussion incidence and trends in 20 high school sports. Pediatrics. 2019;144(5):e20192180. PubMed ID: 31615955 doi:

  • 13.

    Bargary G, Bosten JM, Goodbourn PT, Lawrence-Owen AJ, Hogg RE, Mollon JD. Individual differences in human eye movements: an oculomotor signature? Vision Res. 2017;141:157169. PubMed ID: 28373058 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Galetta K, Barrett J, Allen M, et al. The King-Devick test as a determinant of head trauma and concussion in boxers and MMA fighters. Neurology. 2011;76(17):14561462. PubMed ID: 21288984 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Galetta K, Brandes L, Maki K, et al. The King-Devick test and sports-related concussion: study of a rapid visual screening tool in a collegiate cohort. J Neurol Sci. 2011;309(1-2):3439. PubMed ID: 21849171 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Galetta M, Galetta K, McCrossin J, et al. Saccades and memory: baseline associations of the King-Devick and SCAT2 SAC tests in professional ice hockey players. J Neurol Sci. 2013;328(1-2):2831. PubMed ID: 23499425 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Leong D, Balcer L, Galetta S, Liu Z, Master CL. The King-Devick test as a concussion screening tool administered by sports parents. J Sports Med Phys Fitness. 2014;54(1):7077. PubMed ID: 24445547

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Galetta K, Morganroth J, Moehringer N, et al. Adding vision to concussion testing: a prospective study of sideline testing in youth and collegiate athletes. J Neuroophthalmol. 2015;35(3):235241. PubMed ID: 25742059 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Moran R, Covassin T, Elbin R. Sex differences on vestibular and ocular motor assessment in youth athletes. J Athl Train. 2019;54(4):445448. PubMed ID: 31013113 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sufrinko A, Mucha A, Covassin T. Sex differences in vestibular/ocular and neurocognitive outcomes after sport-related concussion. Clin J Sport Med. 2017;27(2):133138. PubMed ID: 27379660 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Snyder LH, Calton JL, Dickinson AR, Lawrence BM. Eye-hand coordination: saccades are faster when accompanied by a coordinated arm movement. J Neurophysiol. 2002;87(5):22792286. PubMed ID: 11976367 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rodrigues ST, Aguiar AA, Polastri PF, Godoi D, Moraes R, Barela J. Effects of saccadic eye movements on postural control stabilization. Motriz: Rev Educ Fis. 2013;19(3):614619. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Fujiwara K, Kiyota N, Maekawa M, Kunita K, Kiyota T, Maeda K. Saccades and prefrontal hemodynamics in basketball players. Int J Sports Med. 2009;30(9):647651. PubMed ID: 19569008 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 132 132 38
Full Text Views 1 1 0
PDF Downloads 2 2 0