Effect of Glycerol-Induced Hyperhydration on Thermoregulation and Metabolism during Exercise in the Heat

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study examined the effect of glycerol ingestion on fluid homeostasis, thermoregulation, and metabolism during rest and exercise. Six endurance-trained men ingested either 1 g glycerol in 20 ml H2O · kg−1 body weight (bw) (GLY) or 20 ml H2O · kg−1 bw (CON) in a randomized double-blind fashion, 120 min prior to undertaking 90 min of steady state cycle exercise (SS) at 98% of lactate threshold in dry heat (35 °C, 30% RH), with ingestion of CHO-electrolyte beverage (6% CHO) at 15-min intervals. A 15-min cycle, where performance was quantified in kJ, followed (PC). Pre-exercise urine volume was lower in GLY than CON (1119 ± 97 vs. 1503 ± 146 ml · 120 min−1; p < .05). Heart rate was lower (p < .05) throughout SS in GLY, while forearm blood flow was higher (17.1 ± 1.5 vs. 13.7 ± 3.0 ml · 100 g tissue · min−1; < .05) and rectal temperature lower (38.7 ± 0.1 vs. 39.1 ± 0.1 °C; p < .05) in GLY late in SS. Despite these changes, skin and muscle temperatures and circulating catecholamines were not different between trials. Accordingly, no differences were observed in muscle glycogenolysis, lactate accumulation, adenine nucleotide, and phosphocreatine degradation or inosine 5-monophosphate accumulation when comparing GLY with CON. Of note, the work performed during PC was 5% greater in GLY (252 ± 10 vs. 240 ± 9 kJ;p < .05). These results demonstrate that glycerol, when ingested with a bolus of water 2 hours prior to exercise, results in fluid retention, which is capable of reducing cardiovascular strain and enhancing thermoregulation. Furthermore, this practice increases exercise performance in the heat by mechanisms other than alterations in muscle metabolism.

M.J. Anderson and M.A. Febbraio are with the Exercise Physiology and Metabolism Laboratory, Department of Physiology, The University of Melbourne, Parkville, Vic, 3052, Australia. J.D. Cotter is with the Combat Protection and Nutrition Branch of the Defence Science and Technology Organisation, Maribyrnong, Vic, 3001, Australia. A.P. Garnham is with the School of Health Sciences at Deakin University, Burwood, 3125, Australia. D.J. Casley is with the Department of Medicine at the Univesity of Melbourne, Austin and Repatriation Medical Centre, Heidelberg, Vic, 3144 Australia.