Ingestion of Sodium Bicarbonate (NaHCO3) Following a Fatiguing Bout of Exercise Accelerates Postexercise Acid-Base Balance Recovery and Improves Subsequent High-Intensity Cycling Time to Exhaustion

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

This study evaluated the ingestion of sodium bicarbonate (NaHCO3) on postexercise acid-base balance recovery kinetics and subsequent high-intensity cycling time to exhaustion. In a counterbalanced, crossover design, nine healthy and active males (age: 23 ± 2 years, height: 179 ± 5 cm, body mass: 74 ± 9 kg, peak mean minute power (Wpeak) 256 ± 45 W, peak oxygen uptake (V̇O2peak) 46 ± 8 ml.kg-1.min-1) performed a graded incremental exercise test, two familiarization and two experimental trials. Experimental trials consisted of cycling to volitional exhaustion (TLIM1) at 100% WPEAK on two occasions (TLIM1 and TLIM2) interspersed by a 90 min passive recovery period. Using a double-blind approach, 30 min into a 90 min recovery period participants ingested either 0.3 g.kg-1 body mass sodium bicarbonate (NaHCO3) or a placebo (PLA) containing 0.1 g.kg-1 body mass sodium chloride (NaCl) mixed with 4 ml.kg-1 tap water and 1 ml.kg-1 orange squash. The mean differences between TLIM2 and TLIM1 was larger for PLA compared with NaHCO3 (-53 ± 53 vs. -20 ± 48 s; p = .008, d = 0.7, CI =-0.3, 1.6), indicating superior subsequent exercise time to exhaustion following NaHCO3. Blood lactate [Bla-] was similar between treatments post TLIM1, but greater for NaHCO3 post TLIM2 and 5 min post TLIM2. Ingestion of NaHCO3 induced marked increases (p < .01) in both blood pH (+0.07 ± 0.02, d = 2.6, CI = 1.2, 3.7) and bicarbonate ion concentration [HCO3-] (+6.8 ± 1.6 mmo.l-1, d = 3.4, CI = 1.8, 4.7) compared with the PLA treatment, before TLIM2. It is likely both the acceleration of recovery, and the marked increases of acid-base after TLIM1 contributed to greater TLIM2 performance compared with the PLA condition.

Gough is with the Dept. of Sport and Physical Activity, Edge Hill University, Lancashire, UK. Rimmer. Osler, and Higgins are with the Dept. of Life Sciences, University of Derby, Derby, UK.

Address author correspondence to Lewis Gough at goughl@edgehill.ac.uk.
International Journal of Sport Nutrition and Exercise Metabolism
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 122 122 30
Full Text Views 7 7 5
PDF Downloads 6 6 4
Altmetric Badge
PubMed
Google Scholar
Cited By