Acute Ingestion of Caffeinated Chewing Gum Improves Repeated Sprint Performance of Team Sport Athletes With Low Habitual Caffeine Consumption

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The effects of acute ingestion of caffeine on short-duration high-intensity performance are equivocal, while studies of novel modes of delivery and the efficacy of low doses of caffeine are warranted. The aims of the present study were to investigate the effect of acute ingestion of caffeinated chewing gum on repeated sprint performance (RSP) in team sport athletes, and whether habitual caffeine consumption alters the ergogenic effect, if any, on RSP. A total of 18 male team sport athletes undertook four RSP trials using a 40-m maximum shuttle run test, which incorporates 10 × 40-m sprints with 30 s between the start of each sprint. Each participant completed two familiarization sessions, followed by caffeine (CAF; caffeinated chewing gum; 200 mg caffeine) and placebo (PLA; noncaffeinated chewing gum) trials in a randomized, double-blind manner. RSP, assessed by sprint performance decrement (%), did not differ (p = .209; effect size = 0.16; N = 18) between CAF (5.00 ± 2.84%) and PLA (5.43 ± 2.68%). Secondary analysis revealed that low habitual caffeine consumers (<40 mg/day, n = 10) experienced an attenuation of sprint performance decrement during CAF relative to PLA (5.53 ± 3.12% vs. 6.53 ± 2.91%, respectively; p = .049; effect size =0.33); an effect not observed in moderate/high habitual caffeine consumers (>130 mg/day, n = 6; 3.98 ± 2.57% vs. 3.80 ± 1.79%, respectively; p = .684; effect size = 0.08). The data suggest that a low dose of caffeine in the form of caffeinated chewing gum attenuates the sprint performance decrement during RSP by team sport athletes with low, but not moderate-to-high, habitual consumption of caffeine.

Evans and Egan are with the School of Health & Human Performance, Dublin City University, Dublin, Ireland. Tierney, Gray, Hawe, Macken, and Egan are with the Institute for Sport & Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.

Address author correspondence to Brendan Egan at brendan.egan@dcu.ie.
International Journal of Sport Nutrition and Exercise Metabolism

Article Sections

References

  • AaronsL.ShargelL. & YuA. (1981). Applied biopharmaceutics and pharmacokinetics. Journal of Clinical Pharmacy and Therapeutics 6287288. doi:10.1111/j.1365-2710.1981.tb01006.x

    • Search Google Scholar
    • Export Citation
  • Andrade-SouzaV.A.BertuzziR.de AraujoG.G.BishopD. & Lima-SilvaA.E. (2015). Effects of isolated or combined carbohydrate and caffeine supplementation between 2 daily training sessions on soccer performance. Applied Physiology Nutrition and Metabolism 40457463. PubMed doi:10.1139/apnm-2014-0268

    • Search Google Scholar
    • Export Citation
  • AstorinoT.A. & RobersonD.W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. Journal of Strength and Conditioning Research 24257265. PubMed doi:10.1519/JSC.0b013e3181c1f88a

    • Search Google Scholar
    • Export Citation
  • BeaumontR.CorderyP.FunnellM.MearsS.JamesL. & WatsonP. (2017). Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. Journal of Sports Sciences 3519201927. PubMed doi:10.1080/02640414.2016.1241421

    • Search Google Scholar
    • Export Citation
  • BellD.G. & McLellanT.M. (2002). Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. Journal of Applied Physiology 9312271234. PubMed doi:10.1152/japplphysiol.00187.2002

    • Search Google Scholar
    • Export Citation
  • BellD.G.MclellanT.M. & SabistonC.M. (2002). Effect of ingesting caffeine and ephedrine on 10-km run performance. Medicine & Science in Sports & Exercise 34344349. PubMed doi:10.1097/00005768-200202000-00024

    • Search Google Scholar
    • Export Citation
  • BurkeL.M. (2008). Caffeine and sports performance. Applied Physiology Nutrition and Metabolism 3313191334. PubMed doi:10.1139/H08-130

    • Search Google Scholar
    • Export Citation
  • CurrellK. & JeukendrupA.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine 38297316. PubMed doi:10.2165/00007256-200838040-00003

    • Search Google Scholar
    • Export Citation
  • DavisJ. & GreenJ.M. (2009). Caffeine and anaerobic performance. Sports Medicine 39813832. PubMed doi:10.2165/11317770-000000000-00000

    • Search Google Scholar
    • Export Citation
  • Del CosoJ.MuñozG. & Guerra-MuñosJ. (2011). Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Applied Physiology Nutrition and Metabolism 36555561. PubMed doi:10.1139/h11-052

    • Search Google Scholar
    • Export Citation
  • Del CosoJ.PortilloJ.MuñozG.Abián-VicénJ.Gonzalez-MillánC. & Muñoz-GuerraJ. (2013). Caffeine-containing energy drink improves sprint performance during an international rugby sevens competition. Amino Acids 4415111519. PubMed doi:10.1007/s00726-013-1473-5

    • Search Google Scholar
    • Export Citation
  • Del CosoJ.SalineroJ.J.González-MillánC.Abián-VicénJ. & Pérez-GonzálezB. (2012). Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. Journal of the International Society of Sports Nutrition 921. PubMed doi:10.1186/1550-2783-9-21

    • Search Google Scholar
    • Export Citation
  • DoddS.BrooksE.PowersS. & TulleyR. (1991). The effects of caffeine on graded exercise performance in caffeine naive versus habituated subjects. European Journal of Applied Physiology and Occupational Physiology 62424429. PubMed doi:10.1007/BF00626615

    • Search Google Scholar
    • Export Citation
  • FittE.PellD. & ColeD. (2013). Assessing caffeine intake in the United Kingdom diet. Food Chemistry 140421426. PubMed doi:10.1016/j.foodchem.2012.07.092

    • Search Google Scholar
    • Export Citation
  • FitzsimonsM.DawsonB.WardD. & WilkinsonA. (1993). Cycling and running tests of repeated sprint ability. Australian Journal of Science and Medicine in Sport 2582.

    • Search Google Scholar
    • Export Citation
  • Food and Drug Administration. (2010). Caffeine intake by the U.S. population (pp. 846). Silver Spring, MD: Author.

  • FredholmB.B. (1982). Adenosine actions and adenosine receptors after 1 week treatment with caffeine. Acta Physiologica Scandinavica 115283286. PubMed doi:10.1111/j.1748-1716.1982.tb07078.x

    • Search Google Scholar
    • Export Citation
  • FredholmB.B.BättigK.HolménJ.NehligA. & ZvartauE.E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews 5183133. PubMed

    • Search Google Scholar
    • Export Citation
  • FulgoniV.L.KeastD.R. & LiebermanH.R. (2015). Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. The American Journal of Clinical Nutrition 10110811087. PubMed doi:10.3945/ajcn.113.080077

    • Search Google Scholar
    • Export Citation
  • GirardO.Mendez-VillanuevaA. & BishopD. (2011). Repeated-sprint ability—Part I. Sports Medicine 41673694. PubMed doi:10.2165/11590550-000000000-00000

    • Search Google Scholar
    • Export Citation
  • GlaisterM.HauckH.AbrahamC.S.MerryK.L.BeaverD.WoodsB. & McInnesG. (2009). Familiarization, reliability, and comparability of a 40-m maximal shuttle run test. Journal of Sports Science & Medicine 877. PubMed

    • Search Google Scholar
    • Export Citation
  • GlaisterM.HowatsonG.AbrahamC.S.LockeyR.A.GoodwinJ.E.FoleyP. & McInnesG. (2008a). Caffeine supplementation and multiple sprint running performance. Medicine & Science in Sports & Exercise 4018351840. doi:10.1249/MSS.0b013e31817a8ad2

    • Search Google Scholar
    • Export Citation
  • GlaisterM.HowatsonG.PattisonJ.R. & McInnesG. (2008b). The reliability and validity of fatigue measures during multiple-sprint work: An issue revisited. Journal of Strength and Conditioning Research 2215971601. doi:10.1519/JSC.0b013e318181ab80

    • Search Google Scholar
    • Export Citation
  • GoldsteinE.R.ZiegenfussT.KalmanD.KreiderR.CampbellB.WilbornC.GravesB.S. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition 75. PubMed doi:10.1186/1550-2783-7-5

    • Search Google Scholar
    • Export Citation
  • GonçalvesL.S.de Salles PainelliV.YamaguchiG.de OliveiraL.F.SaundersB.da SilvaR.P.GualanoB. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. Journal of Applied Physiology 123213220. doi:10.1152/japplphysiol.00260.2017

    • Search Google Scholar
    • Export Citation
  • GrahamT.E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine 31785807. PubMed doi:10.2165/00007256-200131110-00002

    • Search Google Scholar
    • Export Citation
  • IrwinC.DesbrowB.EllisA.O’KeeffeB.GrantG. & LeverittM. (2011). Caffeine withdrawal and high-intensity endurance cycling performance. Journal of Sports Sciences 29509515. PubMed doi:10.1080/02640414.2010.541480

    • Search Google Scholar
    • Export Citation
  • KamimoriG.H.KaryekarC.S.OtterstetterR.CoxD.S.BalkinT.J.BelenkyG.L. & EddingtonN.D. (2002). The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics 234159167. PubMed doi:10.1016/S0378-5173(01)00958-9

    • Search Google Scholar
    • Export Citation
  • KopecB.J.DawsonB.T.BuckC. & WallmanK.E. (2016). Effects of sodium phosphate and caffeine ingestion on repeated-sprint ability in male athletes. Journal of Science and Medicine in Sport 19272276. PubMed doi:10.1016/j.jsams.2015.04.001

    • Search Google Scholar
    • Export Citation
  • LeeC.-L.LinJ.-C. & ChengC.-F. (2011). Effect of caffeine ingestion after creatine supplementation on intermittent high-intensity sprint performance. European Journal of Applied Physiology 11116691677. PubMed doi:10.1007/s00421-010-1792-0

    • Search Google Scholar
    • Export Citation
  • McNaughtonL.LovellR.J.SieglerJ.MidgleyA.W.MooreL. & BentleyD.J. (2008). The effects of caffeine ingestion on time trial cycling performance. International Journal of Sports Physiology and Performance 3157163. PubMed doi:10.1123/ijspp.3.2.157

    • Search Google Scholar
    • Export Citation
  • PatonC.CostaV. & GuglielmoL. (2015). Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. Journal of Sports Sciences 3310761083. PubMed doi:10.1080/02640414.2014.984752

    • Search Google Scholar
    • Export Citation
  • PatonC.D.HopkinsW.G. & VollebregtL. (2001). Little effect of caffeine ingestion on repeated sprints in team-sport athletes. Medicine & Science in Sports & Exercise 33822825. PubMed doi:10.1097/00005768-200105000-00023

    • Search Google Scholar
    • Export Citation
  • PatonC.D.LoweT. & IrvineA. (2010). Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. European Journal of Applied Physiology 11012431250. PubMed doi:10.1007/s00421-010-1620-6

    • Search Google Scholar
    • Export Citation
  • RyanE.J.KimC.-H.FickesE.J.WilliamsonM.MullerM.D.BarkleyJ.E.GlickmanE.L. (2013). Caffeine gum and cycling performance: A timing study. Journal of Strength and Conditioning Research 27259264. PubMed doi:10.1519/JSC.0b013e3182541d03

    • Search Google Scholar
    • Export Citation
  • RyanE.J.KimC.-H.MullerM.D.BellarD.M.BarkleyJ.E.BlissM.V.MacanderD. (2012). Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. Journal of Strength and Conditioning Research 26844850. PubMed doi:10.1519/JSC.0b013e31822a5cd4

    • Search Google Scholar
    • Export Citation
  • SalineroJ.J.LaraB.Ruiz-VicenteD.ArecesF.Puente-TorresC.Gallo-SalazarC.Del CosoJ. (2017). CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: A pilot study. Nutrients 9269. doi:10.3390/nu9030269

    • Search Google Scholar
    • Export Citation
  • SchneikerK.T.BishopD.DawsonB. & HackettL.P. (2006). Effects of caffeine on prolonged intermittent-sprint ability in team-sport athletes. Medicine & Science in Sports & Exercise 38578585. PubMed doi:10.1249/01.mss.0000188449.18968.62

    • Search Google Scholar
    • Export Citation
  • SökmenB.ArmstrongL.E.KraemerW.J.CasaD.J.DiasJ.C.JudelsonD.A. & MareshC.M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength and Conditioning Research 22978986. doi:10.1519/JSC.0b013e3181660cec

    • Search Google Scholar
    • Export Citation
  • SprietL.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine 44175184. doi:10.1007/s40279-014-0257-8

    • Search Google Scholar
    • Export Citation
  • StuartG.R.HopkinsW.G.CookC. & CairnsS.P. (2005). Multiple effects of caffeine on simulated high-intensity team-sport performance. Medicine & Science in Sports & Exercise 3719982005. PubMed doi:10.1249/01.mss.0000177216.21847.8a

    • Search Google Scholar
    • Export Citation
  • SyedS.A.KamimoriG.H.KellyW. & EddingtonN.D. (2005). Multiple dose pharmacokinetics of caffeine administered in chewing gum to normal healthy volunteers. Biopharmaceutics & Drug Disposition 26403409. PubMed doi:10.1002/bdd.469

    • Search Google Scholar
    • Export Citation
  • TrexlerE.T.Smith-RyanA.E.RoelofsE.J.HirschK.R. & MockM.G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science 16702710. PubMed doi:10.1080/17461391.2015.1085097

    • Search Google Scholar
    • Export Citation
  • Van SoerenM.H. & GrahamT.E. (1998). Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. Journal of Applied Physiology 8514931501. PubMed

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 24 24 24
Full Text Views 2 2 2
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar