The Effect of Mode of Transport on Intraindividual Variability in Glycemic and Insulinemic Response Testing

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The effect of light- to moderate-intensity exercise, such as that used as a mode of transport, on glycemic response testing is unclear. The aim was to investigate the effect of acute exercise (walking and cycling), simulated to act as a mode of transport, prior to glycemic response testing on the intraindividual variability of blood glucose and insulin. A total of 11 male participants visited the laboratory four times. Initially, they undertook a maximum oxygen uptake and two submaximal exercise tests. For the other three visits, they either rested (25 min), cycled, or walked 5 km followed by a 2-hr glycemic response test after consuming a glucose drink (50 g of available carbohydrate). The mean coefficient of variation of each transport group was below the International Organization for Standardization cutoff of 30%. The highest mean coefficient of variation of glucose area under the curve (AUC) was between the rest and the walking trials (30%) followed by walking and cycling (26%). For insulin AUC, the highest mean coefficient of variation was between walking and cycling (28%) followed by rest and walking (24%). The lowest glucose AUC and insulin AUC were between rest and cycling (25% and 14%, respectively). This study did not find differences (p > .05) between the conditions for glucose AUC (at 120 min, rest: 134.5 ± 104.6 mmol/L; walking: 115.5 ± 71.7 mmol/L; and cycling: 142.5 ± 75 mmol/L) and insulin AUC (at 120 min, rest: 19.45 ± 9.12 μmol/ml; walking: 16.49 ± 8.42 μmol/ml; and cycling: 18.55 ± 9.23 μmol/ml). The results indicate no difference between the tests undertaken; however, further research should ensure the inclusion of two rest conditions.

El-Chab and Clegg are with the Dept. of Sport and Health Sciences, Oxford Brookes University, Oxford, United Kingdom.

Address author correspondence to Miriam Clegg at mclegg@brookes.ac.uk.
  • Australian PoCT Practitioner’s Network. (2015, August 15). HemoCue Hb 201+ method and sample collection. Retrieved from http://www.appn.net.au/Data/Sites/1/appn/02implementation/technicalresources/haematology/hemocuehb201methodandsamplecollection.pdf

    • Export Citation
  • Ben-Ezra, V., Jankowski, C., Kendrick, K., & Nichols, D. (1995). Effect of intensity and energy expenditure on postexercise insulin responses in women. Journal of Applied Physiology, 79(6), 2029–2034. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonen, A., Ball-Burnett, M., & Russel, C. (1998). Glucose tolerance is improved after low- and high-intensity exercise in middle-age men and women. Canadian Journal of Applied Physiology, 23(6), 583–593. PubMed doi:10.1139/h98-033

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, B., Zimmermann, M.B., & Kretchmer, N. (1995). Effects of exercise intensity on insulin sensitivity in women with non-insulin-dependent diabetes mellitus. Journal of Applied Physiology, 78(1), 300–306. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brouns, F., Bjorck, I., Frayn, K.N., Gibbs, L., Lang, V., Slama, G., & Wolever, T. (2005). Glycaemic index methodology. Nutrition Research Reviews, 18(1), 145–171. PubMed doi:10.1079/NRR2005100

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Browning, R.C., Baker, E.A., Herron, J.A., & Kram, R. (2006). Effects of obesity and sex on the energetic cost and preferred speed of walking. Journal of Applied Physiology, 100(2), 390–398. PubMed doi:10.1152/japplphysiol.00767.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clegg, M.E., Pratt, M., Meade, C.M., & Henry, C. (2011). The addition of raspberries and blueberries to a starch-based food does not alter the glycaemic response. The British Journal of Nutrition, 106, 335–338. PubMed doi:10.1017/S0007114511001450

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Department for Transport. (2013, July 30). How people travel (mode) (NTS03). Retrieved from https://www.gov.uk/government/statistical-data-sets/nts03-modal-comparisons#table-nts0309

    • Export Citation
  • El-Chab, A., Simpson, C., & Lightowler, H. (2016). The reproducibility of a diet using three different dietary standardisation techniques in athletes. European Journal of Clinical Nutrition, 70(8), 954–958. PubMed doi:10.1038/ejcn.2016.55

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Food and Agriculture Organization and World Health Organization. (1998). Carbohydrates in human nutrition. Report of a joint FAO/WHO expert consultation (Vol. 66). Rome, Italy: Author.

    • Search Google Scholar
    • Export Citation
  • Foster-Powell, K., Holt, S.H., & Brand-Miller, J.C. (2002). International table of glycemic index and glycemic load values: 2002. American Journal of Clinical Nutrition, 76(1), 5–56. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, J.A., & Benedict, F.G. (1918). A biometric study of human basal metabolism. Proceedings of the National Academy of Sciences of the United States of America, 4(12), 370–373. PubMed doi:10.1073/pnas.4.12.370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hayashi, Y., Nagasaka, S., Takahashi, N., Kusaka, I., Ishibashi, S., Numao, S., … Tanaka, K. (2005). A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. The Journal of Clinical Endocrinology & Metabolism, 90(7), 4035–4040. PubMed doi:10.1210/jc.2004-2092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 30(1), 1–15. PubMed doi:10.2165/00007256-200030010-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Howley, E.T., Bassett, D.R., & Welch, H.G. (1995). Criteria for maximal oxygen uptake: Review and commentary. Medicine & Science in Sports & Exercise, 27(9), 1292–1301. PubMed doi:10.1249/00005768-199509000-00009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • International Standards Office. (2010). ISO 26642:2010 food products—Determination of the glycaemic index (GI) and recommendation for food classification. Geneva, Switzerland: Author.

    • Search Google Scholar
    • Export Citation
  • IPAQ. (2002, August). International Physical Activity Questionnaires: Short last 7 days self-administered format. Retrieved from https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjhlMTcxZGJkZmMxYTg1NQ

    • Export Citation
  • King, D.S., Baldus, P.J., Sharp, R.L., Kesl, L.D., Feltmeyer, T.L., & Riddle, M.S. (1995). Time course for exercise-induced alterations in insulin action and glucose tolerance in middle-aged people. Journal of Applied Physiology, 78(1), 17–22. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knudsen, S.H., Karstoft, K., Pedersen, B.K., van Hall, G., & Solomon, T.P.J. (2014). The immediate effects of a single bout of aerobic exercise on oral glucose tolerance across the glucose tolerance continuum. Physiological Reports, 2(8), 12114. PubMed doi:10.14814/phy2.12114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nazar, K., Kaciuba-Uściłko, H., Chwalbińska-Moneta, J., Krotkiewski, M., & Bicz, B. (1987). Plasma insulin and C-peptide responses to oral glucose load after physical exercise in men with normal and impaired glucose tolerance. Acta Physiologica Polonica, 38(6), 458–466. PubMed

    • Search Google Scholar
    • Export Citation
  • Oxford Brookes University. (2014). Oxford Brookes University—Parking permit order form. Retrieved from https://www.brookes.ac.uk/about-brookes/sustainability/travel/university-car-parking/parking-permit-order-form/

    • Export Citation
  • Oxford Brookes University. (2016, February). Oxford Brookes University interim travel plan 2016–2018. Retrieved from https://www.brookes.ac.uk/uploadedFiles/Site_assets/Documents/Travel/Oxford%20Brookes%20Interim%20Travel%20Plan%202016-18.pdf

    • Export Citation
  • Roberts, S., Desbrow, B., Grant, G., Shailendra, A.-D., & Leveritt, M. (2013). Glycemic response to carbohydrate and the effects of exercise and protein. Nutrition, 29(6), 881–885. PubMed doi:10.1016/j.nut.2012.12.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roche Diagnostic USA. (2017, May 4). Cobas 4000 analyzer series. Retrieved from https://usdiagnostics.roche.com/en/core_laboratory/instrument/cobas-4000-analyzer-series.html#menu

    • Export Citation
  • Rose, A.J., Howlett, K., King, D.S., & Hargreaves, M. (2001). Effect of prior exercise on glucose metabolism in trained men. American Journal of Physiology. Endocrinology and Metabolism, 281(4), E766–771. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stamford, B.A., Rowland, R., & Moffatt, R.J. (1978). Effects of severe prior exercise on assessment of maximal oxygen uptake. Journal of Applied Physiology, 44(4), 559–563. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Williams, S.M., Venn, B.J., Perry, T., Brown, R., Wallace, A., Mann, J.I., & Green, T.J. (2008). Another approach to estimating the reliability of glycaemic index. The British Journal of Nutrition, 100(2), 364–372. PubMed doi:10.1017/S0007114507894311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolever, T.M., Jenkins, D.J., Ocana, A.M., Rao, V.A., & Collier, G.R. (1988). Second-meal effect: Low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. American Journal of Clinical Nutrition, 48(4), 1041–1047. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolever, T.M., Nuttall, F.Q., Lee, R., Wong, G.S., Josse, R.G., Csima, A., & Jenkins, D.J. (1985). Prediction of the relative blood glucose response of mixed meals using the white bread glycemic index. Diabetes Care, 8(5), 418–428. PubMed doi:10.2337/diacare.8.5.418

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolever, T.M., Vorster, H.H., Björck, I., Brand-Miller, J., Brighenti, F., Mann, J.I., … Wu, X. (2003). Determination of the glycaemic index of foods: Interlaboratory study. European Journal of Clinical Nutrition, 57(3), 475–482. PubMed doi:10.1038/sj.ejcn.1601551

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 54 54 2
Full Text Views 1 1 0
PDF Downloads 1 1 0