Effects of Coffee Components on Muscle Glycogen Recovery: A Systematic Review

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Coffee is one of the most consumed beverages in the world, and it can improve insulin sensitivity, stimulating glucose uptake in skeletal muscle when adequate carbohydrate intake is observed. The aim of this review is to analyze the effects of coffee and coffee components on muscle glycogen metabolism. A literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis, and seven studies were included, that explored the effects of coffee components on various substances and signaling proteins. In one of the studies with humans, caffeine was shown to increase glucose levels, Ca2+/calmodulin-dependent protein kinase phosphorylation, glycogen resynthesis rates, and glycogen accumulation after exercise. After intravenous injection of caffeine in rats, caffeine increased adenosine monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and glucose transport. In in vitro studies, caffeine raised AMPK and ACC phosphorylation, increasing glucose transport activity and reducing energy status in rat muscle cells. Cafestol and caffeic acid increased insulin secretion in rat beta cells and glucose uptake into human muscle cells. Caffeic acid also increased AMPK and ACC phosphorylation, reducing the energy status and increasing glucose uptake in rat muscle cells. Chlorogenic acid did not show any positive or negative effect. The findings from this review must be taken with caution due to the limited number of studies on the subject. In conclusion, various coffee components had a neutral or positive role in the metabolism of glucose and muscle glycogen, whereas no detrimental effect was described. Coffee beverages should be tested as an option for athletes’ glycogen recovery.

Loureiro is with Health Sciences Postgraduate Program, Laboratório de Bioquímica da Nutrição, Universidade de Brasília, Brasília, Brasil. Reis and da Costa are with the Laboratório de Bioquímica da Nutrição, Dept. of Nutrition, Universidade de Brasília, Brasília, Brasil.

Address author correspondence to Laís Monteiro Rodrigues Loureiro at laismonteirorp@hotmail.com.
International Journal of Sport Nutrition and Exercise Metabolism
Article Sections
References
  • AbbottM.J.EdelmanA.M. & TurcotteL.P. (2009). CaMKK is an upstream signal of AMP-activated protein kinase in regulation of substrate metabolism in contracting skeletal muscle. American Journal of Physiology. Regulatory Integrative and Comparative Physiology 297(6) 17241732. PubMed ID: 19812359 doi:10.1152/ajpregu.00179.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ArnaudM.J. (1987). The pharmacology of caffeine. Progress in Drug Research 31273313. PubMed ID: 3326033 doi:10.1007/978-3-0348-9289-6_9

    • Search Google Scholar
    • Export Citation
  • BassoliB.K.CassollaP.Borba-MuradG.R.ConstantinJ.Salgueiro-PagadigorriaC.L.BazotteR.B.de SouzaH.M. (2008). Chlorogenic acid reduces the plasma glucose peak in the oral glucose tolerance test: Effects on hepatic glucose release and glycaemia. Cell Biochemistry and Function 26320328. PubMed ID: 17990295 doi:10.1002/cbf.1444

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BattramD.S.ArthurR.WeekesA. & GrahamT.E. (2006). The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. The Journal of Nutrition 136(5) 12761280. PubMed ID: 16614416 doi:10.1093/jn/136.5.1276. Retrieved from http://jn.nutrition.org/content/136/5/1276.full.pdf+html

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeamJ.R.GibsonA.L.KerksickC.M.ConnC.A.WhiteA.C. & MermierC.M. (2015). Effect of post-exercise caffeine and green coffee bean extract consumption on blood glucose and insulin concentrations. Nutrition 31(2) 292297. PubMed ID: 25592006 doi:10.1016/j.nut.2014.07.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeelenM.BurkeL.M.GibalaM.J. & van LoonL.J.C. (2010). Nutritional strategies to promote postexercise recovery.pdf. International Journal of Sport Nutrition and Exercise Metabolism 20(6) 515532. PubMed ID: 21116024 doi:10.1123/ijsnem.20.6.515

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeelenM.Van KranenburgJ.SendenJ.M.KuipersH. & Van LoonL.J.C. (2012). Impact of caffeine and protein on postexercise muscle glycogen synthesis. Medicine & Science in Sports & Exercise 44692700. PubMed ID: 21986807 doi:10.1249/MSS.0b013e31823a40ef

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlairD.R.FunaiK.SchweitzerG.G. & CarteeG.D. (2009). A myosin II ATPase inhibitor reduces force production, glucose transport, and phosphorylation of AMPK and TBC1D1 in electrically stimulated rat skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism 296(5) E993E1002. PubMed ID: 19190254 doi:10.1152/ajpendo.91003.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlanchardJ. & SawersS.J.A. (1983). The absolute bioavailability of caffeine in man. European Journal of Clinical Pharmacology 24(1) 9398. PubMed ID: 6832208 doi:10.1007/BF00613933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BlumJ.LemaireB. & LafayS. (2007). Effect of a green decaffeinated coffee extract on glycaemia: A pilot prospective clinical study. Nutrafoods 6(3) 1317.

    • Search Google Scholar
    • Export Citation
  • BonatiM.LatiniR.GallettiF.YoungJ.F.TognoniG. & GarattiniS. (1982). Caffeine disposition after oral doses. Clinical Pharmacology and Therapeutics 32(1) 98106. PubMed ID: 7083737 doi:10.1038/clpt.1982.132

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BrachtelD. & RichterE. (1992). Absolute bioavailability of caffeine from a tablet formulation. Journal of Hepatology 16(3) 385. PubMed ID: 1487618 doi:10.1016/S0168-8278(05)80676-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BurkeL.M.van LoonL.J.C. & HawleyJ.A. (2016). Post-exercise muscle glycogen resynthesis in humans. Journal of Applied Physiology 122(5) 10551067. PubMed ID: 27789774 doi:10.1152/japplphysiol.00860.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ClarkeN.D.RichardsonD.L.ThieJ. & TaylorR. (2017). Coffee ingestion enhances one-mile running race performance. International Journal of Sports Physiology and Performance 120. PubMed ID: 29140142 doi:10.1123/ijspp.2017-0456

    • Search Google Scholar
    • Export Citation
  • CloseG.HamiltonL.PhilpA.BurkeL. & MortonJ. (2016). New strategies in sport nutrition to increase exercise performance. Free Radical Biology and Medicine 98144158. PubMed ID: 26855422 doi:10.1016/j.freeradbiomed.2016.01.016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dirks-NaylorA.J. (2015). The benefits of coffee on skeletal muscle. Life Sciences 143182186. PubMed ID: 26546720 doi:10.1016/j.lfs.2015.11.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DóreaJ.G. & Da CostaT.H.M. (2005). Is coffee a functional food? The British Journal of Nutrition 93(6) 773782. PubMed ID: 16022745 doi:10.1079/BJN20051370

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EgawaT.HamadaT.KamedaN.KaraikeK.MaX.MasudaS.HayashiT. (2009). Caffeine acutely activates 5’adenosine monophosphate-activated protein kinase and increases insulin-independent glucose transport in rat skeletal muscles. Metabolism: Clinical and Experimental 58(11) 16091617 doi:10.1016/j.metabol.2009.05.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EgawaT.HamadaT.MaX.KaraikeK.KamedaN.MasudaS.HayashiT. (2011). Caffeine activates preferentially a1-isoform of 5’AMP-activated protein kinase in rat skeletal muscle. Acta Physiologica 201(2) 227238. PubMed ID: 21241457 doi:10.1111/j.1748-1716.2010.02169.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EgawaT.TsudaS.MaX.HamadaT. & HayashiT. (2011). Caffeine modulates phosphorylation of insulin receptor substrate-1 and impairs insulin signal transduction in rat skeletal muscle. Journal of Applied Physiology 111(6) 16291636. PubMed ID: 21940847 doi:10.1152/japplphysiol.00249.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FarahA. & DonangeloC.M. (2006). Phenolic compounds in coffee. Brazilian Journal of Plants Physiology 18(1) 2336 doi:10.1590/S1677-04202006000100003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FrameS. & CohenP. (2001). GSK3 takes centre stage more than 20 years after its discovery. The Biochemical Journal 359116. PubMed ID: 11563964 doi:10.1042/bj3590001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FuchsC.J.GonzalezJ.T.BeelenM.CermakN.M.SmithF.E.ThelwallP.E.van LoonL.J.C. (2016). Sucrose ingestion after exhaustive exercise accelerates liver, but not muscle glycogen repletion when compared to glucose ingestion in trained athletes. Journal of Applied Physiology 120(11) 13281334. PubMed ID: 27013608 doi:10.1152/japplphysiol.01023.2015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FujiiN.JessenN. & GoodyearL. (2006). AMP-activated protein kinase and the regulation of glucose transport. American Journal of Physiology Endocrinology and Metabolism 291(40) E867E877 doi:10.1152/ajpendo.00207.2006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GoldsteinE.R.ZiegenfussT.KalmanD.KreiderR.CampbellB.WilbornC.AntonioJ. (2010). International society of sports nutrition position stand: Caffeine and performance. Journal of the International Society of Sports Nutrition 7(1) 5. PubMed ID: 20205813 doi:10.1186/1550-2783-7-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GonthierM.-P.VernyM.-A.BessonC.RémésyC. & ScalbertA. (2003). Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats. The Journal of Nutrition 133(6) 18531859. PubMed ID: 12771329 doi:10.1093/jn/133.6.1853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GrahamT.E.SathasivamP.RowlandM.MarkoN.GreerF. & BattramD. (2001). Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Canadian Journal of Physiology and Pharmacology 79(7) 559565. PubMed ID: 11478588 doi:10.1139/y01-026

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarlandB.F. (2000). Caffeine and nutrition. Nutrition 16(7-8) 522526. PubMed ID: 10906543 doi:10.1016/S0899-9007(00)00369-5

  • HigginsS.StraightC.R. & LewisR.D. (2016). The effects of pre-exercise caffeinated-coffee ingestion on endurance performance: An evidence-based review. International Journal of Sport Nutrition and Exercise Metabolism 26221239. PubMed ID: 26568580 doi:10.1123/ijsnem.2015-0147

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HinkleyJ.M.FereyJ.L.BraultJ.J.SmithC.A.S.GilliamL.A.A. & WitczakC.A. (2014). Constitutively active CaMKKα stimulates skeletal muscle glucose uptake in insulin-resistant mice in vivo. Diabetes 63(1) 142151. PubMed ID: 24101676 doi:10.2337/db13-0452

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IvyJ.L. & KuoC.H. (1998). Regulation of Glut 4 protein and glycogen synthase during muscle glycogen synthesis after exercise. Acta Physiologica Scandinavica 162295304. PubMed ID: 9578375 doi:10.1046/j.1365-201X.1998.0302e.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JentjensR. & JeukendrupA.E. (2003). Determinants of post-exercise glycogen synthesis during short term recovery. Sports Medicine 33(2) 117144. PubMed ID: 12617691 doi:10.2165/00007256-200333020-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MellbyeF.B.JeppesenP.B.HermansenK. & GregersenS. (2015). Cafestol, a bioactive substance in coffee, stimulates insulin secretion and increases glucose uptake in muscle cells: Studies in vitro. Journal of Natural Products 78(10) 24472451. PubMed ID: 26465380 doi:10.1021/acs.jnatprod.5b00481

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MoherD.LiberatiA.TetzlaffJ.AltmanD.G. & The PRISMA Group. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement (reprinted from annals of internal medicine). Physical Therapy 89(9) 873880. PubMed ID: 19723669.

    • Search Google Scholar
    • Export Citation
  • MohrM.NielsenJ.J. & BangsboJ. (2011). Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. Journal of Applied Physiology 111(5) 13721379. PubMed ID: 21836046 doi:10.1152/japplphysiol.01028.2010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MooreD.R. (2015). Nutrition to support recovery from endurance exercise. Current Sports Medicine Reports 14(4) 294300. PubMed ID: 26166054 doi:10.1249/JSR.0000000000000180

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MuJ.BrozinickJ.T.ValladaresO.BucanM. & BirnbaumM.J. (2001). A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Molecular Cell 7(5) 10851094. PubMed ID: 11389854 doi:10.1016/S1097-2765(01)00251-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NielsenJ.N.DeraveW.KristiansenS.RalstonE.PlougT. & RichterE.A. (2001). Glycogen synthase localization and activity in rat skeletal muscle is strongly dependent on glycogen content. Journal of Physiology 531(3) 757769. PubMed ID: 11251056 doi:10.1111/j.1469-7793.2001.0757h.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NuhuA.A. (2014). Bioactive micronutrients in coffee: Recent analytical approaches for characterization and quantification. ISRN Nutrition 2014113. PubMed ID: 24967266 doi:10.1155/2014/384230

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’ConnellS.E. & ZurzolaF.J. (1984). Rapid quantitative liquid chromatographic determination of caffeine levels in plasma after oral dosing. Journal of Pharmaceutical Sciences 73(7) 10091011. PubMed ID: 6470942 doi:10.1002/jps.2600730742

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PedersenD.J.LessardS.J.CoffeyV.G.ChurchleyE.G.WoottonA.M.NgT.HawleyJ.A. (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine. Journal of Applied Physiology 105(1) 713. PubMed ID: 18467543 doi:10.1152/japplphysiol.01121.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RichardsonD.L. & ClarkeN.D. (2016). Effect of coffee and caffeine ingestion on resistance exercise performance. Journal of Strength and Conditioning Research 30(10) 28922900. PubMed ID: 26890974 doi:10.1519/JSC.0000000000001382

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SlivkaD.HailesW.CuddyJ. & RubyB. (2008). Caffeine and carbohydrate supplementation during exercise when in negative energy balance: Effects on performance, metabolism, and salivary cortisol. Applied Physiology Nutrition and Metabolism 3310791085. PubMed ID: 19088765 doi:10.1139/H08-093

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SprietL.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine 44175184. PubMed ID: 25355191 doi:10.1007/s40279-014-0257-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StapletonD.MitchelhillK.I.GaoG.WidmerJ.MichellB.J.TehT.KempB.E. (1996). Mammalian AMP-activated protein kinase subfamily. The Journal of Biological Chemistry 271(12) 611614. PubMed ID: 8557660 doi:10.1074/jbc.271.2.611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TaylorC.HighamD.CloseG.L. & MortonJ.P. (2011). The effect of adding caffeine to postexercise carbohydrate feeding on subsequent high-intensity interval-running capacity compared with carbohydrate alone. International Journal of Sport Nutrition & Exercise Metabolism 21(5) 410416. PubMed ID: 21832305 doi:10.1123/ijsnem.21.5.410 Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=sph&AN=66240259&site=ehost-live

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TeekachunhateanS.TosriN.RojanasthienN.SrichairatanakoolS. & SangdeeC. (2013). Pharmacokinetics of caffeine following a single administration of coffee enema versus oral coffee consumption in healthy male subjects. ISRN Pharmacology 201317. PubMed ID: 23533801 doi:10.1155/2013/147238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThongF.S.L.DeraveW.KiensB.GrahamT.E.UrsøB.WojtaszewskiJ.F.P.RichterE.A. (2002). Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51(3) 583590. PubMed ID: 11872654 doi:10.2337/diabetes.51.3.583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TouschD.LajoixA.D.HosyE.Azay-MilhauJ.FerrareK.JahannaultC.PetitP. (2008). Chicoric acid, a new compound able to enhance insulin release and glucose uptake. Biochemical and Biophysical Research Communications 377(1) 131135. PubMed ID: 18834859 doi:10.1016/j.bbrc.2008.09.088

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TrommelenJ.BeelenM.PinckaersP.J.M.SendenJ.M.CermakN.M. & Van LoonL.J.C. (2016). Fructose coingestion does not accelerate postexercise muscle glycogen repletion. Medicine & Science in Sports & Exercise 48(5) 907912. PubMed ID: 26606271 doi:10.1249/MSS.0000000000000829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TsudaS.EgawaT.KitaniK.OshimaR.MaX. & HayashiT. (2015). Caffeine and contraction synergistically stimulate 5 0 -AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Physiology Research 3(10) 112.

    • Search Google Scholar
    • Export Citation
  • TsudaS.EgawaT.MaX.OshimaR.KurogiE. & HayashiT. (2012). Coffee polyphenol caffeic acid but not chlorogenic acid increases 5’AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. Journal of Nutritional Biochemistry 23(11) 14031409. PubMed ID: 22227267 doi:10.1016/j.jnutbio.2011.09.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UpadhyayR. & RaoL.J.M. (2013). An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition 53(9) 968984. PubMed ID: 23768188 doi:10.1080/10408398.2011.576319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UrgertR. & KatanM.B. (1996). The cholesterol-raising factor from coffee beans. Journal of the Royal Society of Medicine 89(11) 618623. PubMed ID: 9135590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilliamsC. & RolloI. (2015). Carbohydrate nutrition and team sport performance. Sports Medicine 451322. PubMed ID: 26553494 doi:10.1007/s40279-015-0399-3

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 466 466 115
Full Text Views 36 36 14
PDF Downloads 19 19 7
Altmetric Badge
PubMed
Google Scholar
Cited By