Toward a Common Understanding of Diet–Exercise Strategies to Manipulate Fuel Availability for Training and Competition Preparation in Endurance Sport

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

From the breakthrough studies of dietary carbohydrate and exercise capacity in the 1960s through to the more recent studies of cellular signaling and the adaptive response to exercise in muscle, it has become apparent that manipulations of dietary fat and carbohydrate within training phases, or in the immediate preparation for competition, can profoundly alter the availability and utilization of these major fuels and, subsequently, the performance of endurance sport (events >30 min up to ∼24 hr). A variety of terms have emerged to describe new or nuanced versions of such exercise–diet strategies (e.g., train low, train high, low-carbohydrate high-fat diet, periodized carbohydrate diet). However, the nonuniform meanings of these terms have caused confusion and miscommunication, both in the popular press and among the scientific community. Sports scientists will continue to hold different views on optimal protocols of fuel support for training and competition in different endurance events. However, to promote collaboration and shared discussions, a commonly accepted and consistent terminology will help to strengthen hypotheses and experimental/experiential data around various strategies. We propose a series of definitions and explanations as a starting point for a more unified dialogue around acute and chronic manipulations of fat and carbohydrate in the athlete’s diet, noting philosophies of approaches rather than a single/definitive macronutrient prescription. We also summarize some of the key questions that need to be tackled to help produce greater insight into this exciting area of sports nutrition research and practice.

Burke is with Australian Institute of Sport, Belconnen, Australia. Burke and Hawley are with the Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia. Jeukendrup is with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom. Morton is with the Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom. Stellingwerff is with Canadian Sport Institute Pacific, Victoria, British Columbia, Canada; and the Department of Exercise Science, Physical & Health Education, University of Victoria British Columbia, Victoria, British Columbia, Canada. Maughan is with the School of Medicine, University of St Andrews, St Andrews, United Kingdom.

Address author correspondence to Louise M. Burke at Louise.burke@ausport.gov.au.
International Journal of Sport Nutrition and Exercise Metabolism

References

  • AhlborgB.BergstromJ.BrohultJ.EkelundL.G.HultmanE. & MaschioG. (1967). Human muscle glycogen content and capacity for prolonged exercise after different diets. Forsvarsmedicin 38599.

    • Search Google Scholar
    • Export Citation
  • AretaJ.L. & HopkinsW.G. (2018). Skeletal muscle glycogen content at rest and during endurance exercise in humans: A meta-analysis. Sports Medicine. Advance online publication. doi:10.1007/s40279-018-0941-1

    • Search Google Scholar
    • Export Citation
  • BadenhorstC.E.DawsonB.CoxG.R.LaarakkersC.M.SwinkelsD.W. & PeelingP. (2015). Acute dietary carbohydrate manipulation and the subsequent inflammatory and hepcidin responses to exercise. European Journal of Applied Physiology 115(12) 25212530. PubMed ID: 26335627 doi:10.1007/s00421-015-3252-3

    • Search Google Scholar
    • Export Citation
  • BartlettJ.D.HawleyJ.A. & MortonJ.P. (2015). Carbohydrate availability and exercise training adaptation: Too much of a good thing? European Journal of Sport Science 15(1) 312. doi:10.1080/17461391.2014.920926

    • Search Google Scholar
    • Export Citation
  • BergstromJ.HermansenL.HultmanE. & SaltinB. (1967). Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71140150. PubMed ID: 5584523 doi:10.1111/j.1748-1716.1967.tb03720.x

    • Search Google Scholar
    • Export Citation
  • BergstromJ. & HultmanE. (1966). Muscle glycogen synthesis after exercise: An enhancing factor localized to the muscle cells in man. Nature 210309310. PubMed ID: 5954569 doi:10.1038/210309a0

    • Search Google Scholar
    • Export Citation
  • BettsJ.A. & WilliamsC. (2010). Short-term recovery from prolonged exercise exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Medicine 40(11) 941959. PubMed ID: 20942510 doi:10.2165/11536900-000000000-00000

    • Search Google Scholar
    • Export Citation
  • BruknerP. (2013). Challenging beliefs in sports nutrition: Are two “core principles” proving to be myths ripe for busting? British Journal of Sports Medicine 47(11) 663664. doi:10.1136/bjsports-2013-092440

    • Search Google Scholar
    • Export Citation
  • BurkeL.M. (2015). Re-examining high-fat diets for sports performance: Did we call the “nail in the coffin” too soon? Sports Medicine 45(Suppl. 1)3349. doi:10.1007/s40279-015-0393-9

    • Search Google Scholar
    • Export Citation
  • BurkeL.M. (2017). Communicating sports science in the age of the Twittersphere. International Journal of Sport Nutrition and Exercise Metabolism 27(1) 15. PubMed ID: 28301302 doi:10.1123/ijsnem.2017-0057

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.AngusD.J.CoxG.R.CummingsN.K.FebbraioM.A.GawthornK.HargreavesM. (2000a). Effect of fat adaptation and carbohydrate restoration on metabolism and performance during prolonged cycling. Journal of Applied Physiology 89(6) 24132421. doi:10.1152/jappl.2000.89.6.2413

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.HawleyJ.A.AngusD.J.CoxG.R.ClarkS.CummingsN.K.HargreavesM. (2002). Adaptations to short-term high-fat diet persist during exercise despite high carbohydrate availability. Medicine & Science in Sports & Exercise 34(1) 8391. PubMed ID: 11782652 doi:10.1097/00005768-200201000-00014

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.HawleyJ.A.SchabortE.J.St Clair GibsonA.MujikaI. & NoakesT.D. (2000b). Carbohydrate loading failed to improve 100-km cycling performance in a placebo-controlled trial. Journal of Applied Physiology 8812841290. doi:10.1152/jappl.2000.88.4.1284

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.HawleyJ.A.WongS.H. & JeukendrupA.E. (2011). Carbohydrates for training and competition. Journal of Sports Sciences 29(Suppl. 1) 1727. doi:10.1080/02640414.2011.585473

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.KiensB. & IvyJ.L. (2004). Carbohydrates and fat for training and recovery. Journal of Sports Sciences 22(1) 1530. PubMed ID: 14971430 doi:10.1080/0264041031000140527

    • Search Google Scholar
    • Export Citation
  • BurkeL.M. & ReadR.S.D. (1987). A study of carbohydrate loading techniques used by marathon runners. Canadian Journal of Sport Science 12610.

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.RossM.L.Garvican-LewisL.A.WelvaertM.HeikuraI.A.ForbesS.G.HawleyJ.A. (2017a). Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. Journal of Physiology 595(9) 27852807. doi:10.1113/JP273230

    • Search Google Scholar
    • Export Citation
  • BurkeL.M.van LoonL.J.C. & HawleyJ.A. (2017b). Postexercise muscle glycogen resynthesis in humans. Journal of Applied Physiology 122(5) 10551067. doi:10.1152/japplphysiol.00860.2016

    • Search Google Scholar
    • Export Citation
  • BussauV.A.FairchildT.J.RaoA.SteeleP.D. & FournierP.A. (2002). Carbohydrate loading in human muscle: An improved 1 day protocol. European Journal of Applied Physiology 87290295. doi:10.1007/s00421-002-0621-5

    • Search Google Scholar
    • Export Citation
  • ChristensenE.H. & HansenO. (1939). III. Arbeitsfähigkeit und Ernährung Skandinavisches Archiv Für. Physiologie 81(1) 160171.

    • Search Google Scholar
    • Export Citation
  • CostaR.J.S.MiallA.KhooA.RauchC.SnipeR.Camoes-CostaV. & GibsonP. (2017). Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Applied Physiology Nutrition and Metabolism 42(5) 547557. PubMed ID: 28177715 doi:10.1139/apnm-2016-0453

    • Search Google Scholar
    • Export Citation
  • CoxG.R.ClarkS.A.CoxA.J.HalsonS.L.HargreavesM.HawleyJ.A.BurkeL.M. (2010). Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling. Journal of Applied Physiology 109(1) 126134. PubMed ID: 20466803 doi:10.1152/japplphysiol.00950.2009

    • Search Google Scholar
    • Export Citation
  • CoxP.J.KirkT.AshmoreT.WillertonK.EvansR.SmithA.ClarkeK. (2016). Nutritional ketosis alters fuel preference and thereby endurance performance in athletes. Cell Metabolism 24(2) 256268. PubMed ID: 27475046 doi:10.1016/j.cmet.2016.07.010

    • Search Google Scholar
    • Export Citation
  • CoyleE.F. (1991). Timing and method of increased carbohydrate intake to cope with heavy training, competition and recovery. Journal of Sports Sciences 9(Suppl.) 2952. doi:10.1080/02640419108729865

    • Search Google Scholar
    • Export Citation
  • De BockK.DeraveW.EijndeB.O.HesselinkM.K.KoninckxE.RoseA.J.HespelP. (2008). Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. Journal of Applied Physiology 104(4) 10451055. PubMed ID: 18276898 doi:10.1152/japplphysiol.01195.2007

    • Search Google Scholar
    • Export Citation
  • EvansM.CoganK.E. & EganB. (2017). Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. Journal of Physiology 595(9) 28572871. PubMed ID: 27861911 doi:10.1113/JP273185

    • Search Google Scholar
    • Export Citation
  • FordyceT. (2018). Chris Froome: Team Sky’s unprecedented release of data reveals how British rider won Giro d’Italia. Retrieved from https://www.bbc.com/sport/cycling/44694122

    • Export Citation
  • GejlK.D.ThamsL.B.HansenM.Rokkedal-LauschT.PlomgaardP.NyboL.OrtenbladN. (2017). No superior adaptations to carbohydrate periodization in elite endurance athletes. Medicine & Science in Sports & Exercise 49(12) 24862497. PubMed ID: 28723843 doi:10.1249/MSS.0000000000001377

    • Search Google Scholar
    • Export Citation
  • GirardO.AmannM.AugheyR.BillautF.BishopD.J.BourdonP.SchumacherY.O. (2013). Position statement—altitude training for improving team-sport players’ performance: Current knowledge and unresolved issues. British Journal of Sports Medicine 47(Suppl. 1) i8i16. doi:10.1136/bjsports-2013-093109

    • Search Google Scholar
    • Export Citation
  • HalsonS.L.LancasterG.I.AchtenJ.GleesonM. & JeukendrupA.E. (2004). Effects of carbohydrate supplementation on performance and carbohydrate oxidation after intensified cycling training. Journal of Applied Physiology 97(4) 12451253. PubMed ID: 15155717 doi:10.1152/japplphysiol.01368.2003

    • Search Google Scholar
    • Export Citation
  • HansenA.K.FischerC.P.PlomgaardP.AndersenJ.L.SaltinB. & PedersenB.K. (2005). Skeletal muscle adaptation: Training twice every second day vs. training once daily. Journal of Applied Physiology 98(1) 9399. PubMed ID: 15361516 doi:10.1152/japplphysiol.00163.2004

    • Search Google Scholar
    • Export Citation
  • HargreavesM.HawleyJ.A. & JeukendrupA.E. (2004). Pre-exercise carbohydrate and fat ingestion: Effects on metabolism and performance. Journal of Sports Sciences 22(1) 3138. PubMed ID: 14971431 doi:10.1080/0264041031000140536

    • Search Google Scholar
    • Export Citation
  • HavemannL.WestS.GoedeckeJ.H.McDonaldI.A.St-Clair GibsonA.NoakesT.D. & LambertE.V. (2006). Fat adaptation followed by carbohydrate-loading compromises high-intensity sprint performance. Journal of Applied Physiology 100(1) 194202. PubMed ID: 16141377 doi:10.1152/japplphysiol.00813.2005

    • Search Google Scholar
    • Export Citation
  • HawleyJ.A.LundbyC.CotterJ.D. & BurkeL.M. (2018). Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metabolism. 27962976. PubMed ID: 29719234 doi:10.1016/j.cmet.2018.04.014

    • Search Google Scholar
    • Export Citation
  • HawleyJ.A.SchabortE.J.NoakesT.D. & DennisS.C. (1997). Carbohydrates for training and competition. Sports Medicine 24(2) 7381.

    • Search Google Scholar
    • Export Citation
  • HearrisM.A.HammondK.M.FellJ.M. & MortonJ.P. (2018). Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations. Nutrients 10(3) pii: E298. PubMed ID: 29498691 doi:10.3390/nu10030298

    • Search Google Scholar
    • Export Citation
  • HennigarS.R.McClungJ.P. & PasiakosS.M. (2017). Nutritional interventions and the IL-6 response to exercise. FASEB Journal 31(9) 37193728. PubMed ID: 28507168 doi:10.1096/fj.201700080R

    • Search Google Scholar
    • Export Citation
  • HermansenL.HultmanE. & SaltinB. (1967). Muscle glycogen during prolonged severe exercise. Acta Physiologica Scandinavica 71129139. PubMed ID: 5584522 doi:10.1111/j.1748-1716.1967.tb03719.x

    • Search Google Scholar
    • Export Citation
  • HoldsworthD.A.CoxP.J.KirkT.StradlingH.ImpeyS.G. & ClarkeK. (2017). A ketone ester drink increases postexercise muscle glycogen synthesis in humans. Medicine & Science in Sports & Exercise 49(9) 17891795. PubMed ID: 28398950 doi:10.1249/MSS.0000000000001292

    • Search Google Scholar
    • Export Citation
  • HowleyP. (1996). In the long run—Steve Moneghetti (p. 133). Ringwood, Australia: Penguin Books Australia.

  • HulstonC.J.VenablesM.C.MannC.H.MartinC.PhilpA.BaarK. & JeukendrupA.E. (2010). Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Medicine & Science in Sports & Exercise 42(11) 20462055. PubMed ID: 20351596 doi:10.1249/MSS.0b013e3181dd5070

    • Search Google Scholar
    • Export Citation
  • HultmanE. (1967). Muscle glycogen in man determined in needle biopsy specimens: Method and normal values. Scandinavian Journal of Clinical and Laboratory Investigation 19(3) 209217. PubMed ID: 6057997 doi:10.3109/00365516709090628

    • Search Google Scholar
    • Export Citation
  • HymanM. (1970). Diet and athletics. British Medicine of Journal 4(5726) 52. doi:10.1136/bmj.4.5726.52-b

  • ImpeyS.G.HammondK.M.ShepherdS.O.SharplesA.P.StewartC.LimbM.MortonJ.P. (2016). Fuel for the work required: A practical approach to amalgamating train-low paradigms for endurance athletes. Physiological Reports 4(10) pii: e12803. PubMed ID: 27225627 doi:10.14814/phy2.12803

    • Search Google Scholar
    • Export Citation
  • ImpeyS.G.HearrisM.A.HammondK.M.BartlettJ.D.LouisJ.CloseG.L. & MortonJ.P. (2018). Fuel for the work required: A theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Medicine 48(5) 10311048. PubMed ID: 29453741 doi:10.1007/s40279-018-0867-7

    • Search Google Scholar
    • Export Citation
  • JeukendrupA.E. (2011). Nutrition for endurance sports: Marathon, triathlon, and road cycling. Journal of Sports Sciences 29(Suppl. 1) S91S99. doi:10.1080/02640414.2011.610348

    • Search Google Scholar
    • Export Citation
  • JeukendrupA.E. (2017a). Periodized nutrition for athletes. Sports Medicine 47(Suppl. 1) 5163. doi:10.1007/s40279-017-0694-2

  • JeukendrupA.E. (2017b). Training the gut for athletes. Sports Medicine 47(Suppl. 1) 101110. doi:10.1007/s40279-017-0690-6

  • KarlssonJ. & SaltinB. (1971). Diet, muscle glycogen, and endurance performance. Journal of Applied Physiology 31203206. PubMed ID: 5558241 doi:10.1152/jappl.1971.31.2.203

    • Search Google Scholar
    • Export Citation
  • KasperA.M.CockingS.CockayneM.BarnardM.TenchM.ParkerL.MortonJ.P. (2016). Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted. European Journal of Sport Science 16(5) 560568. doi:10.1080/17461391.2015.1041063

    • Search Google Scholar
    • Export Citation
  • KroghA. & LindhardJ. (1920). The relative value of fat and carbohydrate as sources of muscular energy: With appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochemical Journal 14290363.

    • Search Google Scholar
    • Export Citation
  • LaneS.C.BirdS.R.BurkeL.M. & HawleyJ.A. (2013). Effect of a carbohydrate mouth rinse on simulated cycling time-trial performance commenced in a fed or fasted state. Applied Physiology Nutrition and Metabolism 38(2) 134139. PubMed ID: 23438223 doi:10.1139/apnm-2012-0300

    • Search Google Scholar
    • Export Citation
  • LeckeyJ.J.HoffmanN.J.ParrE.B.DevlinB.L.TrewinA.J.SteptoN.K.HawleyJ.A. (2018). High dietary fat intake increases fat oxidation and reduces skeletal muscle mitochondrial respiration in trained humans. FASEB Journal 32(6) 29792991. PubMed ID: 29401600 doi:10.1096/fj.201700993R

    • Search Google Scholar
    • Export Citation
  • MarquetL.A.BrisswalterJ.LouisJ.TiollierE.BurkeL.M.HawleyJ.A. & HausswirthC. (2016a). Enhanced endurance performance by periodization of carbohydrate intake: “Sleep Low” strategy. Medicine & Science in Sports & Exercise 48(4) 663672. doi:10.1249/MSS.0000000000000823

    • Search Google Scholar
    • Export Citation
  • MarquetL.A.HausswirthC.MolleO.HawleyJ.A.BurkeL.M.TiollierE. & BrisswalterJ. (2016b). Periodization of carbohydrate intake: Short-term effect on performance. Nutrients 8(12) pii: E755. PubMed ID: 27897989 doi:10.3390/nu8120755

    • Search Google Scholar
    • Export Citation
  • McInerneyP.LessardS.J.BurkeL.M.CoffeyV.G.Lo GiudiceS.L.SouthgateR.J. & HawleyJ.A. (2005). Failure to repeatedly supercompensate muscle glycogen stores in highly trained men. Medicine & Science in Sports & Exercise 37(3) 404411. PubMed ID: 15741838 doi:10.1249/01.MSS.0000155699.51360.2F

    • Search Google Scholar
    • Export Citation
  • MiallA.KhooA.RauchC.SnipeR.M.J.Camoes-CostaV.L.GibsonP.R. & CostaR.J.S. (2018). Two weeks of repetitive gut-challenge reduce exercise-associated gastrointestinal symptoms and malabsorption. Scandinavian Journal of Medicine and Science in Sports 28(2) 630640 doi:10.1111/sms12912

    • Search Google Scholar
    • Export Citation
  • MirtschinJ.G.ForbesS.F.CatoL.E.HeikuraI.A.StrobelN.HallR.BurkeL.M. (2018). Organization of dietary control for nutrition-training intervention involving periodized carbohydrate availability and ketogenic low-carbohydrate high-fat diet. International Journal of Sport Nutrition and Exercise Metabolism 28. doi:10.1123/ijsnem.2017-0249

    • Search Google Scholar
    • Export Citation
  • MortonJ. & FellJ.M. (2016). Nutritional strategies for the Tour de France. Aspetar Sports Medicine of Journal. Retrieved from http://www.aspetar.com/journal/viewarticle.aspx?id=341#.W3wBps4zZI0

    • Search Google Scholar
    • Export Citation
  • NoakesT.VolekJ.S. & PhinneyS.D. (2014). Low-carbohydrate diets for athletes: What evidence? British Journal of Sports Medicine 48(14) 10771078. doi:10.1136/bjsports-2014-093824

    • Search Google Scholar
    • Export Citation
  • PalfreemanR. (2016). Chris Froome. Aspetar Sports Medicine of Journal. Retrieved from http://www.aspetar.com/journal/viewarticle.aspx?id=342#.W1h3odUzZI0

    • Search Google Scholar
    • Export Citation
  • PhilpA.HargreavesM. & BaarK. (2012). More than a store: Regulatory roles for glycogen in skeletal muscle adaptation to exercise. American Journal of Physiology Endocrinology and Metabolism 302(11) E1343E1351. doi:10.1152/ajpendo.00004.2012

    • Search Google Scholar
    • Export Citation
  • PhinneyS.D.BistrianB.R.EvansW.J.GervinoE. & BlackburnG.L. (1983). The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism: Clinical and Experimental 32(8) 769776. doi:10.1016/0026-0495(83)90106-3

    • Search Google Scholar
    • Export Citation
  • PilegaardH.OsadaT.AndersenL.T.HelgeJ.W.SaltinB. & NeuferP.D. (2005). Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise. Metabolism: Clinical and Experimental 54(8) 10481055. doi:10.1016/j.metabol.2005.03.008

    • Search Google Scholar
    • Export Citation
  • PinckaersP.J.Churchward-VenneT.A.BaileyD. & van LoonL.J. (2017). Ketone bodies and exercise performance: The next magic bullet or merely hype? Sports Medicine 47(3) 383391. PubMed ID: 27430501 doi:10.1007/s40279-016-0577-y

    • Search Google Scholar
    • Export Citation
  • SaleC.VarleyI.JonesT.W.JamesR.M.TangJ.C.Y.FraserW.D. & GreevesJ.P. (2015). Effect of carbohydrate feeding on the bone metabolic response to running. Journal of Applied Physiology 119(7) 824830. PubMed ID: 26251510 doi:10.1152/japplphysiol.00241.2015

    • Search Google Scholar
    • Export Citation
  • ShermanW.M.CostillD.L.FinkW.J. & MillerJ.M. (1981). Effect of exercise-diet manipulation on muscle glycogen and its subsequent utilisation during performance. International Journal of Sports Medicine 2114118. doi:10.1055/s-2008-1034594

    • Search Google Scholar
    • Export Citation
  • SprietL.L. (2014). New insights into the interaction of carbohydrate and fat metabolism during exercise. Sports Medicine 44(Suppl. 1) 8796. doi:10.1007/s40279-014-0154-1

    • Search Google Scholar
    • Export Citation
  • StellingwerffT. (2012). Case study: Nutrition and training periodization in three elite marathon runners. International Journal of Sport Nutrition and Exercise Metabolism 22(5) 392400. doi:10.1123/ijsnem.22.5.392

    • Search Google Scholar
    • Export Citation
  • StellingwerffT.SprietL.L.WattM.J.KimberN.E.HargreavesM.HawleyJ.A. & BurkeL.M. (2006). Decreased PDH activation and glycogenolysis during exercise following fat adaptation with carbohydrate restoration. American Journal of Physiology Endocrinology and Metabolism 290(2) E380E388. PubMed ID: 16188909 doi:10.1152/ajpendo.00268.2005

    • Search Google Scholar
    • Export Citation
  • TarnopolskyM.A.ZawadaC.RichmondL.B.CarterS.ShearerJ.GrahamT. & PhillipsS.M. (2001). Gender differences in carbohydrate loading are related to energy intake. Journal of Applied Physiology 91225230. PubMed ID: 11408434 doi:10.1152/jappl.2001.91.1.225

    • Search Google Scholar
    • Export Citation
  • ThomasD.T.ErdmanK.A. & BurkeL.M. (2016). American College of Sports Medicine joint position statement. nutrition and athletic performance. Medicine & Science in Sports & Exercise 48(3) 543568. PubMed ID: 26891166 doi:10.1249/MSS.0000000000000852

    • Search Google Scholar
    • Export Citation
  • TownsendR.Elliott-SaleK.J.CurrellK.TangJ.FraserW.D. & SaleC. (2017). The effect of postexercise carbohydrate and protein ingestion on bone metabolism. Medicine & Science in Sports & Exercise 49(6) 12091218. PubMed ID: 28121797 doi:10.1249/MSS.0000000000001211

    • Search Google Scholar
    • Export Citation
  • VandoorneT.De SmetS.RamaekersM.Van ThienenR.De BockK.ClarkeK. & HespelP. (2017). Intake of a ketone ester drink during recovery from exercise promotes mTORC1 signaling but not glycogen resynthesis in human muscle. Frontiers in Physiology 8310. PubMed ID: 28588499 doi:10.3389/fphys.2017.00310

    • Search Google Scholar
    • Export Citation
  • VolekJ.S.FreidenreichD.J.SaenzC.KuncesL.J.CreightonB.C.BartleyJ.M.PhinneyS.D. (2016). Metabolic characteristics of keto-adapted ultra-endurance runners. Metabolism: Clinical and Experimental 65(3) 100110. doi:10.1016/j.metabol.2015.10.028

    • Search Google Scholar
    • Export Citation
  • VolekJ.S.NoakesT. & PhinneyS.D. (2015). Rethinking fat as a fuel for endurance exercise. European Journal of Sport Science 15(1) 1320. doi:10.1080/17461391.2014.959564

    • Search Google Scholar
    • Export Citation
  • VolekJ.S. & PhinneyS.D. (2012). The art and science of low carbohydrate performance. Beyond Obesity LLC.

  • WebsterC.C.NoakesT.D.ChackoS.K.SwartJ.KohnT.A. & SmithJ.A. (2016). Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. Journal of Physiology 594(15) 43894405. PubMed ID: 26918583 doi:10.1113/JP271934

    • Search Google Scholar
    • Export Citation
  • WebsterC.C.SwartJ.NoakesT.D. & SmithJ.A. (2017). A carbohydrate ingestion intervention in an elite athlete who follows a LCHF diet. International Journal of Sports Physiology and Performance 13(7) 957960. doi:10.1123/ijspp.2017-0392

    • Search Google Scholar
    • Export Citation
  • YeoW.K.PatonC.D.GarnhamA.P.BurkeL.M.CareyA.L. & HawleyJ.A. (2008). Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. Journal of Applied Physiology 105(5) 14621470. PubMed ID: 18772325 doi:10.1152/japplphysiol.90882.2008

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 454 454 454
Full Text Views 29 29 29
PDF Downloads 14 14 14

Altmetric Badge

PubMed

Google Scholar