Exclusion of Trunk Region Reduces Biological Error but Increases Technical Error of DXA Lean Soft Tissue Estimates From Nonfasted Assessments

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Texas Tech University
  • 2 Texas A&M International University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Implementation of an overnight fast is a pervasive recommendation prior to body composition assessment, but this is not always feasible. Previous research has indicated that for dual-energy X-ray absorptiometry (DXA) scans, the trunk region may be particularly susceptible to biological error induced by food and fluid intake. This analysis explored the potential utility of excluding the trunk region from nonfasted DXA scans. Recreationally active adults were assessed by DXA after an overnight fast and again after consumption of standardized high-carbohydrate and low-carbohydrate diets. The effects of food consumption on total and appendicular lean soft tissue (LST; ALST) and ALST-derived skeletal muscle mass (SMM) were evaluated via analysis of variance, and metrics of reliability were calculated. In both conditions, the constant error of nonfasted assessments was slightly lower when the trunk was excluded (ALST and SMM: 0.7–1.2%; LST: 1.5%). However, in both conditions, the total error, standard error of the estimate, and limits of agreement were higher for ALST and SMM (total error: 2.4–3.0%; standard error of the estimate: 2.2–2.8%; and limits of agreement: 4.5–5.6%) than LST (total error: 2.1%; standard error of the estimate: 1.3–1.4%; and limits of agreement: 2.5–2.8%) when expressed relative to mean values. The added technical error due to demarcation of body regions for ALST and SMM appears to outweigh the removal of biological error due to exclusion of the trunk. Although elimination of the trunk region is theoretically appealing for nonfasted DXA assessments, it is apparently an inferior method compared with utilizing whole-body LST.

Tinsley is with the Dept. of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX. Nickerson is with the Dept. of Professional Programs, Texas A&M International University, Laredo, TX.

Address author correspondence to Grant M. Tinsley at grant.tinsley@ttu.edu.
  • Abe, T., Kojima, K., Kearns, C.F., Yohena, H., & Fukuda, J. (2003). Whole body muscle hypertrophy from resistance training: distribution and total mass. British Journal of Sports Medicine, 37(6), 543545. PubMed ID: 14665598 doi:10.1136/bjsm.37.6.543

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abe, T., Loenneke, J.P., Kojima, K., Thiebaud, R.S., Fahs, C.A., & Sekiguchi, O. (2014). Influence of strength training on distribution of trunk and appendicular muscle mass. The Journal of Aging Research & Clinical Practice, 3, 2830.

    • Search Google Scholar
    • Export Citation
  • Bone, J.L., Ross, M.L., Tomcik, K.A., Jeacocke, N.A., Hopkins, W.G., & Burke, L.M. (2017). Manipulation of muscle creatine and glycogen changes DXA estimates of body composition. Medicine & Science in Sports & Exercise. 49(5), 10291035. PubMed ID: 28410328 doi:10.1249/MSS.0000000000001174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buckinx, F., Landi, F., Cesari, M., Fielding Roger, A., Visser, M., Engelke, K., . . . Kanis, J.A. (2018). Pitfalls in the measurement of muscle mass: a need for a reference standard. Journal of Cachexia, Sarcopenia and Muscle, 9(2), 269278. PubMed ID: 29349935 doi:10.1002/jcsm.12268

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Buehring, B., Krueger, D., Libber, J., Heiderscheit, B., Sanfilippo, J., Johnson, B., . . . Binkley, N. (2014). Dual-energy X-ray absorptiometry measured regional body composition least significant change: effect of region of interest and gender in athletes. Journal of Clinical Densitometry, 17(1), 121128. PubMed ID: 23643968 doi:10.1016/j.jocd.2013.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Degen, L.P., & Phillips, S.F. (1996). Variability of gastrointestinal transit in healthy women and men. Gut, 39(2), 299305. PubMed ID: 8977347 doi:10.1136/gut.39.2.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hellmig, S., Von Schoning, F., Gadow, C., Katsoulis, S., Hedderich, J., Folsch, U.R., & Stuber, E. (2006). Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: Influence of age, sex and body mass index. European Journal of Gastroenterology & Hepatology, 21(12), 18321838. PubMed ID: 17074022 doi:10.1111/j.1440-1746.2006.04449.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heymsfield, S.B., Gonzalez, M.C., Lu, J., Jia, G., & Zheng, J. (2015). Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proceedings of the Nutrition Society, 74(4), 355366. PubMed ID: 25851205 doi:10.1017/S0029665115000129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horber, F.F., Thomi, F., Casez, J.P., Fonteille, J., & Jaeger, P. (1992). Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis. The British Journal of Radiology, 65, 895900. PubMed ID: 1422663 doi:10.1259/0007-1285-65-778-895

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerr, A., Slater, G.J., & Byrne, N. (2017). Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. British Journal of Nutrition, 117(4), 591601. PubMed ID: 28382898 doi:10.1017/S0007114517000551

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, J., Wang, Z., Heymsfield, S.B., Baumgartner, R.N., & Gallagher, D. (2002). Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method. The American Journal of Clinical Nutrition, 76(2), 378383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohman, M., Tallroth, K., Kettunen, J.A., & Marttinen, M.T. (2009). Reproducibility of dual-energy X-ray absorptiometry total and regional body composition measurements using different scanning positions and definitions of regions. Metabolism, 58, 16631668. PubMed ID: 19632696 doi:10.1016/j.metabol.2009.05.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Hopkins, W.G., & Burke, L.M. (2012). Effects of daily activities on dual-energy X-ray absorptiometry measurements of body composition in active People. Medicine & Science in Sports & Exercise, 44, 180189. PubMed ID: 22179140 doi:10.1249/MSS.0b013e318228b60e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nana, A., Slater, G.J., Stewart, A.D., & Burke, L.M. (2015). Methodology review: using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. International Journal of Sport Nutrition and Exercise Metabolism, 25, 198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pietrobelli, A., Gallagher, D., Baumgartner, R., Ross, R., & Heymsfield, S.B. (1998). Lean R value for DXA two-component soft-tissue model: Influence of age and tissue or organ type. Applied Radiation and Isotopes, 49(5–6), 743744. PubMed ID: 9569598 doi:10.1016/S0969-8043(97)00100-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roubenoff, R., Kehayias, J.J., Dawson-Hughes, B., & Heymsfield, S.B. (1993). Use of dual-energy X-ray absorptiometry in body-composition studies: not yet a “gold standard”. The American Journal of Clinical Nutrition, 58(5), 589591. PubMed ID: 8237861 doi:10.1093/ajcn/58.5.589

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rouillier, M.-A., David-Riel, S., Brazeau, A.-S., St-Pierre, D.H., & Karelis, A.D. (2015). Effect of an acute high carbohydrate diet on body composition using DXA in young men. Annals of Nutrition and Metabolism, 66, 233236. PubMed ID: 26183608 doi:10.1159/000435840

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shiel, F., Persson, C., Furness, J., Simas, V., Pope, R., Climstein, M., . . . Schram, B. (2018). Dual energy X-ray absorptiometry positioning protocols in assessing body composition: A systematic review of the literature. Journal of Science and Medicine in Sport. 21(10), 10381044. PubMed ID: 29588115 doi:10.1016/j.jsams.2018.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tinsley, G.M., Morales, E., Forsse, J.S., & Grandjean, P.W. (2017). Impact of acute dietary manipulations on DXA and BIA body composition estimates. Medicine & Science in Sports & Exercise, 49(4), 823832. PubMed ID: 27875499 doi:10.1249/MSS.0000000000001148

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 255 205 24
Full Text Views 9 8 1
PDF Downloads 10 9 0