Is Coffee a Useful Source of Caffeine Preexercise?

in International Journal of Sport Nutrition and Exercise Metabolism
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Caffeine is a well-established ergogenic aid, with its performance-enhancing effects demonstrated across a wide variety of exercise modalities. Athletes tend to frequently consume caffeine as a performance enhancement method in training and competition. There are a number of methods available as a means of consuming caffeine around exercise, including caffeine anhydrous, sports drinks, caffeine carbohydrate gels, and gum. One popular method of caffeine ingestion in nonathletes is coffee, with some evidence suggesting it is also utilized by athletes. In this article, we discuss the research pertaining to the use of coffee as an ergogenic aid, exploring (a) whether caffeinated coffee is ergogenic, (b) whether dose-matched caffeinated coffee provides a performance benefit similar in magnitude to caffeine anhydrous, and (c) whether decaffeinated coffee consumption affects the ergogenic effects of a subsequent isolated caffeine dose. There is limited evidence that caffeinated coffee has the potential to offer ergogenic effects similar in magnitude to caffeine anhydrous; however, this requires further investigation. Coingestion of caffeine with decaffeinated coffee does not seem to limit the ergogenic effects of caffeine. Although caffeinated coffee is potentially ergogenic, its use as a preexercise caffeine ingestion method represents some practical hurdles to athletes, including the consumption of large volumes of liquid and difficulties in quantifying the exact caffeine dose, as differences in coffee type and brewing method may alter caffeine content. The use of caffeinated coffee around exercise has the potential to enhance performance, but athletes and coaches should be mindful of the practical limitations.

Pickering is with the Institute of Coaching and Performance, School of Sport and Wellbeing, University of Central Lancashire, Preston, United Kingdom. Grgic is with the Institute for Health & Sport (IHES), Victoria University, Melbourne, VIC, Australia.

Pickering (craigpickering1014@hotmail.com) is corresponding author.
  • Aguilar-Navarro, M., Muñoz, G., Salinero, J.J., Muñoz-Guerra, J., Fernández-Álvarez, M., Plata, M.D., & Del Coso, J. (2019). Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients, 11(2), 286. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anderson, D.E., LeGrand, S.E., & McCart, R.D. (2018). Effect of caffeine on sprint cycling in experienced cyclists. Journal of Strength and Conditioning Research, 32(8), 2221–2226. PubMed ID: 29912858

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arendt, J. (2009). Managing jet lag: Some of the problems and possible new solutions. Sleep Medicine Reviews, 13(4), 249–256. PubMed ID: 19147377 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Backes, T.P., & Fitzgerald, K. (2016). Fluid consumption, exercise, and cognitive performance. Biology of Sport, 33(3), 291–296. PubMed ID: 27601785 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Backx, K., van Someren, K.A., & Palmer, G.S. (2003). One hour cycling performance is not affected by ingested fluid volume. International Journal of Sport Nutrition and Exercise Metabolism, 13(3), 333–342. PubMed ID: 14669933 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beaven, C.M., Maulder, P., Pooley, A., Kilduff, L., & Cook, C. (2013). Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Applied Physiology, Nutrition, and Metabolism, 38(6), 633–637. PubMed ID: 23724880 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boekema, J., Samsom, M., van Berge Henegouwen, G.P., & Smout, P. (1999). Coffee and gastrointestinal function: Facts and fiction. A review. Scandinavian Journal of Gastroenterology, 34(230), 35–39. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butts, N.K., & Crowell, D. (1985). Effect of caffeine ingestion on cardiorespiratory endurance in men and women. Research Quarterly in Exercise and Sport, 56(4), 301–305. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Childs, E., Hohoff, C., Deckert, J., Xu, K., Badner, J., & De Wit, H. (2008). Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology, 33(12), 2791–2800. PubMed ID: 18305461 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Church, D.D., Hoffman, J.R., LaMonica, M.B., Riffe, J.J., Hoffman, M.W., Baker, K.M., . . . Stout, J.R. (2015). The effect of an acute ingestion of Turkish coffee on reaction time and time trial performance. The Journal of the International Society of Sports Nutrition, 12(1), 37. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, N., Baxter, H., Fajemilua, E., Jones, V., Oxford, S., Richardson, D., . . . Mundy, P. (2016). Coffee and caffeine ingestion have little effect on repeated sprint cycling in relatively untrained males. Sports, 4(3), 45. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clarke, N.D., Richardson, D.L., Thie, J., & Taylor, R. (2018). Coffee ingestion enhances 1-mile running race performance. International Journal of Sports Physiology and Performance, 13(6), 789–794. PubMed ID: 29140142 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, C.J., Crewther, B.T., Kilduff, L.P., Drawer, S., & Gaviglio, C.M. (2011). Skill execution and sleep deprivation: Effects of acute caffeine or creatine supplementation-a randomized placebo-controlled trial. Journal of the International Society of Sports Nutrition, 8(1), 2. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, R., Naclerio, F., Allgrove, J., & Larumbe-Zabala, E. (2014). Effects of a carbohydrate and caffeine gel on intermittent sprint performance in recreationally trained males. European Journal of Sport Science, 14(4), 353–361. PubMed ID: 23837918 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Costill, D.L., Dalsky, G.P., & Fink, W.J. (1978). Effects of caffeine ingestion on metabolism and exercise performance. Medicine and Science in Sports, 10(3), 155–158. PubMed ID: 723503

    • Search Google Scholar
    • Export Citation
  • Coyle, E.F. (2004). Fluid and fuel intake during exercise. Journal of Sports Sciences, 22(1), 39–55. PubMed ID: 14971432 doi:

  • Currell, K., & Jeukendrup, A.E. (2008). Validity, reliability and sensitivity of measures of sporting performance. Sports Medicine, 38(4), 297–316. PubMed ID: 18348590 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Demura, S., Yamada, T., & Terasawa, N. (2007). Effect of coffee ingestion on physiological responses and ratings of perceived exertion during submaximal endurance exercise. Perceptual and Motor Skills, 105(3), 1109–1116. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., . . . Aury, J.M. (2014). The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science, 345(6201), 1181–1184. PubMed ID: 25190796 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Paulis, T., Schmidt, D.E., Bruchey, A.K., Kirby, M.T., McDonald, M.P., Commers, P., . . . Martin, P.R. (2002). Dicinnamoylquinides in roasted coffee inhibit the human adenosine transporter. European Journal of Pharmacology, 442(3), 215–223. PubMed ID: 12065074 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Pauw, K., Roelands, B., Van Cutsem, J., Marusic, U., Torbeyns, T., & Meeusen, R. (2017). Electro-physiological changes in the brain induced by caffeine or glucose nasal spray. Psychopharmacology, 234(1), 53–62. PubMed ID: 27664111 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbrow, B., Hall, S., & Irwin, C. (2019). Caffeine content of Nespresso® pod coffee. Nutrition and Health, 25(1),3–7. doi:

  • Desbrow, B., Hall, S., O’Connor, H., Slater, G., Barnes, K., & Grant, G. (2018). Caffeine content of pre‐workout supplements commonly used by Australian consumers. Drug Testing and Analysis, 11(3), 523–529. PubMed ID: 30196576 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbrow, B., Henry, M., & Scheelings, P. (2012). An examination of consumer exposure to caffeine from commercial coffee and coffee-flavoured milk. Journal of Food Composition and Analysis, 28(2), 114–118. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbrow, B., Hughes, R., Leveritt, M., & Scheelings, P. (2007). An examination of consumer exposure to caffeine from retail coffee outlets. Food and Chemical Toxicology, 45(9), 1588–1592. PubMed ID: 17412475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Desbrow, B., & Leveritt, M. (2006). Awareness and use of caffeine by athletes competing at the 2005 Ironman Triathlon World Championships. International Journal of Sport Nutrition and Exercise Metabolism, 16(5), 545–558. PubMed ID: 17240785 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, M., & Smith, P.M. (2004). Effects of caffeine ingestion on exercise testing: A meta-analysis. International Journal of Sports Nutrition and Exercise Metabolism, 14(6), 626–646. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doherty, M., & Smith, P.M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 15(2), 69–78. PubMed ID: 15773860 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). (2015). Scientific opinion on the safety of caffeine. EFSA Journal, 13(5), 4102.

    • Search Google Scholar
    • Export Citation
  • Frary, C.D., Johnson, R.K., & Wang, M.Q. (2005). Food sources and intakes of caffeine in the diets of persons in the United States. Journal of the American Dietetic Association, 105(1), 110–113. PubMed ID: 15635355 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldstein, E.R., Ziegenfuss, T., Kalman, D., Kreider, R., Campbell, B., Wilborn, C., . . . Wildman, R. (2010). International society of sports nutrition position stand: Caffeine and performance. The Journal of the International Society of Sports Nutrition, 7(1), 5. PubMed ID: 20205813 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gonçalves, L.D., Painelli, V.D., Yamaguchi, G., Oliveira, L.F., Saunders, B., da Silva, R.P., . . . Gualano, B. (2017). Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. The Journal of Applied Physiology, 123(1), 213–220. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, T.E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports Medicine, 31(11), 785–807. PubMed ID: 11583104 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graham, T.E., Hibbert, E., & Sathasivam, P. (1998). Metabolic and exercise endurance effects of coffee and caffeine ingestion. Journal of Applied Physiology, 85(3), 883–889. PubMed ID: 9729561 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Grgic, I., Pickering, C., Schoenfeld, B., Bishop, D., & Pedisic, Z. (2019). Wake up and smell the coffee: Caffeine supplementation and exercise performance—An umbrella review of 21 published meta-analyses. British Journal of Sports Medicine. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Grgic, J., & Pickering, C. (2019). The effects of caffeine ingestion on isokinetic muscular strength: A meta-analysis. Journal of Science and Medicine in Sport, 22(3), 353–360 PubMed ID: 30217692 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grgic, J., Trexler, E.T., Lazinica, B., & Pedisic, Z. (2018). Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. Journal of the International Society of Sports Nutrition, 15(1), 11. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grosso, G., Godos, J., Galvano, F., & Giovannucci, E.L. (2017). Coffee, caffeine, and health outcomes: An umbrella review. Annual Review of Nutrition, 37, 131–156. PubMed ID: 28826374 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, S., Desbrow, B., Anoopkumar-Dukie, S., Davey, A.K., Arora, D., McDermott, C., . . . Grant, G.D. (2015). A review of the bioactivity of coffee, caffeine and key coffee constituents on inflammatory responses linked to depression. Food Research International, 76, 626–636. PubMed ID: 28455046 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haskell, C.F., Kennedy, D.O., Milne, A.L., Wesnes, K.A., & Scholey, A.B. (2008). The effects of L-theanine, caffeine and their combination on cognition and mood. Biological Psychology, 77(2), 113–122. PubMed ID: 18006208 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Higgins, S., Straight, C.R., & Lewis, R.D. (2016). The effects of pre-exercise caffeinated coffee ingestion on endurance performance: An evidence-based review. International Journal of Sport Nutrition and Exercise Metabolism, 26(3), 221–239. PubMed ID: 26568580 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgson, A.B., Randell, R.K., & Jeukendrup, A.E. (2013). The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE, 8(4), e59561. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hogervorst, E. (2008). Caffeine improves physical and cognitive performance during exhaustive exercise. Medicine & Science in Sports & Exercise, 40(10), 1841–1851. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurley, C.F., Hatfield, D.L., & Riebe, D.A. (2013). The effect of caffeine ingestion on delayed onset muscle soreness. Journal of Strength and Conditioning Research, 27(11), 3101–3109. PubMed ID: 24164961

    • Search Google Scholar
    • Export Citation
  • Jeukendrup, A.E. (2017). Training the gut for athletes. Sports Medicine, 47(1), 101–110. doi:

  • Kaplan, G.B., Greenblatt, D.J., Ehrenberg, B.L., Goddard, J.E., Cotreau, M.M., Harmatz, J.S., & Shader, R.I. (1997). Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. The Journal of Clinical Pharmacology, 37(8), 693–703. PubMed ID: 9378841 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafata, D., Carlson-Phillips, A., Sims, S.T., & Russell, E.M. (2012). The effect of a cold beverage during an exercise session combining both strength and energy systems development training on core temperature and markers of performance. Journal of the International Society of Sports Nutrition, 9(1), 44. PubMed ID: 22992430 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamina, S., & Musa, D.I. (2009). Ergogenic effect of varied doses of coffee-caffeine on maximal aerobic power of young African subjects. African Health Sciences, 9(4), 270–274 PubMed ID: 21503180

    • Search Google Scholar
    • Export Citation
  • Lara, B., Ruiz-Moreno, C., Salinero, J.J., & Del Coso, J. (2019). Time course of tolerance to the performance benefits of caffeine. PLoS ONE, 14(1), e0210275. PubMed ID: 30673725 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lieberman, H.R., Wurtman, R.J., Emde, G.G., Roberts, C., & Coviella, I.L. (1987). The effects of low doses of caffeine on human performance and mood. Psychopharmacology, 92(3), 308–312. PubMed ID: 3114783 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Liguori, A., Hughes, J.R., Grass, J.A. (1997). Absorption and subjective effects of caffeine from coffee, cola and capsules. Pharmacology Biochemistry and Behavior, 58(3), 721–726. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Loureiro, L.M., Reis, C.E., & da Costa, T.H. (2018). Effects of coffee components on muscle glycogen recovery: A systematic review. International Journal of Sport Nutrition and Exercise Metabolism, 28(3), 284–293. PubMed ID: 29345166 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maclure, M. (1991). The case-crossover design: A method for studying transient effects on the risk of acute events. The American Journal of Epidemiology, 133(2), 144–153. PubMed ID: 1985444 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madzharov, A., Ye, N., Morrin, M., & Block, L. (2018). The impact of coffee-like scent on expectations and performance. Journal of Environmental Psychology, 57, 83–86. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maridakis, V., O’Connor, P.J., Dudley, G.A., & McCully, K.K. (2007). Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. The Journal of Pain, 8(3), 237–243. PubMed ID: 17161977 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marques, A., Jesus, A., Giglio, B., Marini, A., Lobo, P., Mota, J., & Pimental, G. (2018). Acute caffeinated coffee consumption does not improve time trial performance in an 800-m run: A randomized, double-blind, crossover, placebo-controlled study. Nutrients, 10(6), 657. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mattocks, K.T., Buckner, S.L., Jessee, M.B., Dankel, S.J., Mouser, J.G., & Loenneke, J.P. (2017). Practicing the test produces strength equivalent to higher volume training. Medicine & Science in Sports & Exercise, 49(9), 1945–1954. PubMed ID: 28463902 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCusker, R.R., Fuehrlein, B., Goldberger, B.A., Gold, M.S., & Cone, E.J. (2006). Caffeine content of decaffeinated coffee. Journal of Analytical Toxicology, 30(8), 611–613. PubMed ID: 17132260 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McLellan, T.M., & Bell, D.G. (2004). The impact of prior coffee consumption on the subsequent ergogenic effect of anhydrous caffeine. International Journal of Sport Nutrition and Exercise Metabolism, 14(6), 698–708. PubMed ID: 15657474 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mündel, T., King, J., Collacott, E., & Jones, D.A. (2006). Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Experimental Physiology, 91(5), 925–933. PubMed ID: 16777932 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nieman, D.C., Goodman, C.L., Capps, C.R., Shue, Z.L., & Arnot, R. (2018). Influence of 2-weeks ingestion of high chlorogenic acid coffee on mood state, performance, and postexercise inflammation and oxidative stress: A randomized, placebo-controlled trial. International Journal of Sport Nutrition and Exercise Metabolism, 28(1), 55–65. PubMed ID: 29035597 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, C., & Kiely, J. (2018). Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Medicine, 48(1), 7–16. PubMed ID: 28853006 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pickering, C., & Kiely, J. (2019). What should we do about habitual caffeine use in athletes? Sports Medicine, 49(6), 833–842. PubMed ID: 30173351 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Polito, M.D., Souza, D.B., Casonatto, J., & Farinatti, P. (2016). Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and meta-analysis. Science in Sports, 31(3), 119–128. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, D.L., & Clarke, N.D. (2016). Effect of coffee and caffeine ingestion on resistance exercise performance. Journal of Strength and Conditioning Research, 30(10), 2892–2900. PubMed ID: 26890974 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodrigues, L.O., Russo, A.K., Silva, A.C., Picarro, I.C., Silva, F.R., Zogaib, P.S., & Soares, D.D. (1990). Effects of caffeine on the rate of perceived exertion. Brazilian Journal of Medical and Biological Research, 23(10), 965–968. PubMed ID: 2101061

    • Search Google Scholar
    • Export Citation
  • Ryan, E.J., Kim, C.H., Muller, M.D., Bellar, D.M., Barkley, J.E., Bliss, M.V., . . . Glickman, E. (2012). Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. Journal of Strength and Conditioning Research, 26(3), 844–850. PubMed ID: 22293680 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabol, F., Grgic, J., & Mikulic, P. (2019). The effects of three different doses of caffeine on jumping and throwing performance: a randomized, double-blind, crossover study. International Journal of Sports Physiology and Performance. PubMed ID: 30702372 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, B., de Oliveira, L.F., da Silva, R.P., de Salles Painelli, V., Gonçalves, L.S., Yamaguchi, G., . . . Gualano, B. (2017). Placebo in sports nutrition: A proof-of-principle study involving caffeine supplementation. Scandinavian Journal of Medicine and Science in Sports, 27(11), 1240–1247. PubMed ID: 27882605 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabir, A., Hooton, A., Tallis, J., & Higgins, M. (2018). The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients, 10(10), 1528. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Silvarolla, M.B., Mazzafera, P., & Fazuoli, L.C. (2004). Plant biochemistry: A naturally decaffeinated Arabica coffee. Nature, 429(6994), 826–826. PubMed ID: 15215853 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Southward, K., Rutherfurd-Markwick, K.J., & Ali, A. (2018). The effect of acute caffeine ingestion on endurance performance: A systematic review and meta-analysis. Sports Medicine, 48(8), 1913–1928 PubMed ID: 29876876 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Souza, D.B., Del Coso, J., Casonatto, J., & Polito, M.D. (2017). Acute effects of caffeine-containing energy drinks on physical performance: A systematic review and meta-analysis. European Journal of Nutrition, 56(1), 13–27. PubMed ID: 27757591 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spriet, L.L. (2014). Exercise and sport performance with low doses of caffeine. Sports Medicine, 44(2), 175–184. doi:

  • Trexler, E.T., Smith-Ryan, A.E., Roelofs, E.J., Hirsch, K.R., & Mock, M.G. (2016). Effects of coffee and caffeine anhydrous on strength and sprint performance. European Journal of Sport Science, 16(6), 702–710. PubMed ID: 26394649 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trice, I., & Haymes, E.M. (1995). Effects of caffeine ingestion on exercise-induced change during high-intensity intermittent exercise. International Journal of Sport Nutrition, 5(1), 37–44. PubMed ID: 7749424 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tunnicliffe, J.M., Erdman, K.A., Reimer, R.A., Lun, V., & Shearer, J. (2008). Consumption of dietary caffeine and coffee in physically active populations: Physiological interactions. Applied Physiology, Nutrition, and Metabolism, 33(6), 1301–1310. PubMed ID: 19088792 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venier, S., Grgic, J., & Mikulic, P. (2019). Caffeinated gel ingestion enhances jump performance, muscle strength, and power in trained men. Nutrients, 11(4), 937. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wesensten, N.J., Killgore, W.D., & Balkin, T.J. (2005). Performance and alertness effects of caffeine, dextroamphetamine, and modafinil during sleep deprivation. Journal of Sleep Research, 14(3), 255–266. PubMed ID: 16120100 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wickham, K.A., & Spriet, L.L. (2018). Administration of caffeine in alternate forms. Sports Medicine, 48(S1), 79–91. doi:

  • Wiles, J.D., Bird, S.R., Hopkins, J., & Riley, M. (1992). Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running. British Journal of Sports Medicine, 26(2), 116–120. PubMed ID: 1623356 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimer, G.S., Lamb, D.R., Sherman, W.M., & Swanson, S.C. (1997). Temperature of ingested water and thermoregulation during moderate-intensity exercise. Canadian Journal of Applied Physiology, 22(5), 479–493. PubMed ID: 9356766 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zwyghuizen-Doorenbos, A., Roehrs, T.A., Lipschutz, L., Timms, V., & Roth, T. (1990). Effects of caffeine on alertness. Psychopharmacology, 100(1), 36–39. PubMed ID: 2296626 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2312 2312 915
Full Text Views 82 82 30
PDF Downloads 48 48 11