We are updating our website on Thursday, December 2 from 9 AM – 5 PM EST. During this time, users may experience some disruptions while using the site. We apologize for the inconvenience.

Astaxanthin Supplementation Increases Glutathione Concentrations but Does Not Impact Fat Oxidation During Exercise in Active Young Men

in International Journal of Sport Nutrition and Exercise Metabolism
View More View Less
  • 1 Department of Health and Human Performance, Texas State University, San Marcos, TX, USA
  • | 2 College of Health Sciences, The University of Memphis, Memphis, TN, USA
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $90.00

1 year online subscription

USD  $120.00

Student 2 year online subscription

USD  $172.00

2 year online subscription

USD  $229.00

This study investigated the effects of 6 mg/day of astaxanthin supplementation on markers of oxidative stress and substrate metabolism during a graded exercise test in active young men. A double-blind, randomized, counterbalanced, cross-over design was used. Fourteen men (age = 23 ± 2 years) supplemented with 6 mg/day of astaxanthin and a placebo for 4 weeks, with a 1 week washout period between treatments. Following each supplementation period, a fasting blood sample was obtained to measure markers of oxidative stress: glutathione, hydrogen peroxide, advanced oxidation protein products, and malondialdehyde. Participants also completed a graded exercise test after each treatment to determine substrate utilization during exercise at increasing levels of intensity. Glutathione was ∼7% higher following astaxanthin compared with placebo (1,233 ± 133 vs. 1,156 ± 185 μM, respectively; p = .02, d = 0.48). Plasma hydrogen peroxide and malondialdehyde were not different between treatments (p > .05). Although not statistically significant (p = .45), advanced oxidation protein products were reduced by ∼28%. During the graded exercise test, mean fat oxidation rates were not different between treatments (p > .05); however, fat oxidation decreased from 50 to 120 W (p < .001) and from 85 to 120 W (p = .004) in both conditions. Astaxanthin supplementation of 6 mg/day for 4 weeks increased whole blood levels of the antioxidant glutathione in active young men but did not affect oxidative stress markers or substrate utilization during exercise. Astaxanthin appears to be an effective agent to increase endogenous antioxidant status.

McAllister (mjm445@txstate.edu) is corresponding author, https://orcid.org/0000-0002-4072-317X

  • Ambati, R.R., Moi, P.S., Ravi, S., & Aswathanarayana, R.G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications — A review. Marine Drugs, 12(1), 128152. https://doi.org/10.3390/md12010128

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Andriani, A., Halim, A., Handini, M., Armyanti, I., & Novianry, V. (2019). The effect of astaxanthin on glutathione levels in damaged liver tissues of male wistar rats induced by oral formaldehyde. KnE Life Sciences, 4(12), 147. https://doi.org/10.18502/kls.v4i12.4168

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoi, W., Maoka, T., Abe, R., Fujishita, M., & Tominaga, K. (2018). Comparison of the effect of none-sterified and esterified astaxanthins on endurance performance in mice. Journal of Clinical Biochemistry and Nutrition, 62(2), 161166. https://doi.org/10.3164/jcbn.17-89

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoi, W., Naito, Y., Takanami, Y., Ishii, T., Kawai, Y., Akagiri, S., Kato, Y., Osawa, T., & Yoshikawa, T. (2008). Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. Biochemical and Biophysical Research Communications, 366(4), 892897. https://doi.org/10.1016/j.bbrc.2007.12.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aoi, W., Naito, Y., & Yoshikawa, T. (2014). Potential role of oxidative protein modification in energy metabolism in exercise. Sub-Cellular Biochemistry, 77, 175187. https://doi.org/10.1007/978-94-007-7920-4_15

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aquilano, K., Baldelli, S., & Ciriolo, M.R. (2014). Glutathione: New roles in redox signalling for an old antioxidant. Frontiers in Pharmacology, 5, 196. https://doi.org/10.3389/fphar.2014.00196

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, D.R., Gough, L.A., Deb, S.K., Sparks, S.A., & McNaughton, L.R. (2018). Astaxanthin in exercise metabolism, performance and recovery: A review. Frontiers in Nutrition, 4, 76. https://doi.org/10.3389/fnut.2017.00076

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, D.R., Warner, A.R., Deb, S.K., Gough, L.A., Sparks, S.A., & McNaughton, L.R. (2021). The effect of astaxanthin supplementation on performance and fat oxidation during a 40 km cycling time trial. Journal of Science and Medicine in Sport, 24(1), 9297. https://doi.org/10.1016/j.jsams.2020.06.017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates. http://www.utstat.toronto.edu/∼brunner/oldclass/378f16/readings/CohenPower.pdf

    • Search Google Scholar
    • Export Citation
  • Dhalla, N.S., Temsah, R.M., & Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. Journal of Hypertension, 18(6), 655673. https://doi.org/10.1097/00004872-200018060-00002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Draeger, C.L., Naves, A., Marques, N., Baptistella, A.B., Carnauba, R.A., Paschoal, V., & Nicastro, H. (2014). Controversies of antioxidant vitamins supplementation in exercise: Ergogenic or ergolytic effects in humans? Journal of the International Society of Sports Nutrition, 11(1), 4. https://doi.org/10.1186/1550-2783-11-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Earnest, C.P., Lupo, M., White, K.M., & Church, T.S. (2011). Effect of astaxanthin on cycling time trial performance. International Journal of Sports Medicine, 32(11), 882888. https://doi.org/10.1055/s-0031-1280779

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guerin, M., Huntley, M.E., & Olaizola, M. (2003). Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology, 21(5), 210216. https://doi.org/10.1016/S0167-7799(03)00078-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C.J., Webb, H.E., Zourdos, M.C., & Acevedo, E.O. (2013). Cardiovascular reactivity, stress, and physical activity. Frontiers in Physiology, 4, 314. https://doi.org/10.3389/fphys.2013.00314

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hussein, G., Sankawa, U., Goto, H., Matsumoto, K., & Watanabe, H. (2006). Astaxanthin, a carotenoid with potential in human health and nutrition. Journal of Natural Products, 69(3), 443449. https://doi.org/10.1021/np050354

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ikeuchi, M., Koyama, T., Takahashi, J., & Yazawa, K. (2006). Effects of astaxanthin supplementation on exercise-induced fatigue in mice. Biological and Pharmaceutical Bulletin, 29(10), 21062110. https://doi.org/10.1248/bpb.29.2106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jentzsch, A.M., Bachmann, H., Fürst, P., & Biesalski, H.K. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radical Biology and Medicine, 20(2), 251256. https://doi.org/10.1016/0891-5849(95)02043-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kidd, P. (2011). Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Alternative Medicine Review, 16(4), 355364. https://pubmed.ncbi.nlm.nih.gov/22214255/

    • Search Google Scholar
    • Export Citation
  • Kohandel, Z., Farkhondeh, T., Aschner, M., & Samarghandian, S. (2021). Nrf2 a molecular therapeutic target for Astaxanthin. Biomedicine and Pharmacotherapy, 137, Article 111374. https://doi.org/10.1016/j.biopha.2021.111374

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kris-Etherton, P.M., Lichtenstein, A.H., Howard, B.V., Steinberg, D., & Witztum, J.L. (2004). Antioxidant vitamin supplements and cardiovascular disease. Circulation, 110(5), 637641. https://doi.org/10.1161/01.CIR.0000137822.39831.F1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ma, Q. (2013). Role of Nrf2 in oxidative stress and toxicity. Annual Review of Pharmacology and Toxicology, 53, 401426. https://doi.org/10.1146/annurev-pharmtox-011112-140320

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahjoub, S., & Roudsari, J.M. (2012). Role of oxidative stress in pathogenesis of metabolic syndrome. Caspian Journal of Internal Medicine, 3(1), 386396.

    • Search Google Scholar
    • Export Citation
  • Marseglia, L., Manti, S., D’Angelo, G., Nicotera, A., Parisi, E., Di Rosa, G., Gitto, E., & Arrigo, T. (2015). Oxidative stress in obesity: A critical component in human diseases. International Journal of Molecular Sciences, 16(1), 378400. https://doi.org/10.3390/ijms16010378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mills, E.J., Chan, A.W., Wu, P., Vail, A., Guyatt, G.H., & Altman, D.G. (2009). Design, analysis, and presentation of crossover trials. Trials, 10, 27. https://doi.org/10.1186/1745-6215-10-27

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pescatello, L., Arena, R., Riebe, D., & Thompson, P. (2014). ACSM’s guidelines for exercise testing and prescription (9th ed.). Wolters Kluwer/Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • Randell, R.K., Rollo, I., Roberts, T.J., Dalrymple, K.J., Jeukendrup, A.E., & Carter, J.M. (2017). Maximal fat oxidation rates in an athletic population. Medicine and Science in Sports and Exercise, 49(1), 133140. https://doi.org/10.1249/MSS.0000000000001084

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Res, P.T., Cermak, N.M., Stinkens, R., Tollakson, T.J., Haenen, G.R., Bast, A., & Van Loon, L.J.C. (2013). Astaxanthin supplementation does not augment fat use or improve endurance performance. Medicine and Science in Sports and Exercise, 45(6), 11581165. https://doi.org/10.1249/MSS.0b013e31827fddc4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • San-Millán, I., & Brooks, G.A. (2018). Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals. Sports Medicine, 48(2), 467479. https://doi.org/10.1007/s40279-017-0751-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soory, M. (2012). Nutritional antioxidants and their applications in cardiometabolic diseases. Infectious Disorders - Drug Targets, 12(5), 388401. https://doi.org/10.2174/187152612804142233

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sotler, R., Poljšak, B., Dahmane, R., Jukić, T., Pavan Jukić, D., Rotim, C., Trebše, P., & Starc, A. (2019). Prooxidant activities of antioxidants and their impact on health. Acta clinica Croatica, 58(4), 726736. https://doi.org/10.20471/acc.2019.58.04.20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sztretye, M., Dienes, B., Gönczi, M., Czirják, T., Csernoch, L., Dux, L., Szentesi, P., & Keller-Pintér, A. (2019). Astaxanthin: A potential mitochondrial-targeted antioxidant treatment in diseases and with aging. Oxidative Medicine and Cellular Longevity, 2019, Article 3849692. https://doi.org/10.1155/2019/3849692

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Townsend, D.M., Tew, K.D., & Tapiero, H. (2003). The importance of glutathione in human disease. Biomedicine and Pharmacotherapy, 57(3), 145155. https://doi.org/10.1016/S0753-3322(03)00043-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Visioli, F., & Artaria, C. (2017). Astaxanthin in cardiovascular health and disease: Mechanisms of action, therapeutic merits, and knowledge gaps. Food and Function, 8(1), 3963. https://doi.org/10.1039/c6fo01721e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Witko-Sarsat, V., Friedlander, M., Capeillère-Blandin, C., Nguyen-Khoa, T., Nguyen, A.T., Zingraff, J., Jungers, P., & Descamps-Latscha, B. (1996). Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney International, 49(5), 13041313. https://doi.org/10.1038/ki.1996.186

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 502 502 147
Full Text Views 43 43 6
PDF Downloads 56 56 5