Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

The influence of running speed and sex on running economy is unclear and may have been confounded by measurements of oxygen cost that do not account for known differences in substrate metabolism, across a limited range of speeds, and differences in performance standard. Therefore, this study assessed the energy cost of running over a wide range of speeds in high-level and recreational runners to investigate the effect of speed (in absolute and relative terms) and sex (men vs women of equivalent performance standard) on running economy. To determine the energy cost (kcal · kg−1 · km−1) of submaximal running, speed at lactate turn point (sLTP), and maximal rate of oxygen uptake, 92 healthy runners (high-level men, n = 14; high-level women, n = 10; recreational men, n = 35; recreational women, n = 33) completed a discontinuous incremental treadmill test. There were no sex-specific differences in the energy cost of running for the recreational or high-level runners when compared at absolute or relative running speeds (P > .05). The absolute and relative speed–energy cost relationships for the high-level runners demonstrated a curvilinear U shape with a nadir reflecting the most economical speed at 13 km/h or 70% sLTP. The high-level runners were more economical than the recreational runners at all absolute and relative running speeds (P < .05). These findings demonstrate that there is an optimal speed for economical running, there is no sex-specific difference, and high-level endurance runners exhibit better running economy than recreational endurance runners.

Black is with the School of Sport and Health Sciences, University of Exeter, Devon, United Kingdom. Handsaker, Allen, and Folland are with the School of Sport, Exercise and Health Sciences, and Forrester, the Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, United Kingdom.

Black (M.I.Black@exeter.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Foster CLucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37:316319. PubMed doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Saunders PUPyne DBTelford RDHawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34:465485. PubMed doi:10.2165/00007256-200434070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bassett DRHowley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:7084. PubMed doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lucia AEsteve-Lanao JOlivan Jet al. Physiological characteristics of the best Eritrean runners—exceptional running economy. Appl Phys Nutr Metab. 2006;31:530540. PubMed doi:10.1139/h06-029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Lacour JRBourdin M. Factors affecting the energy cost of level running at submaximal speed. Eur J Appl Physiol. 2015;115:651673. PubMed doi:10.1007/s00421-015-3115-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Fletcher JREsau SPMacintosh BR. Economy of running: beyond the measurement of oxygen uptake. J Appl Physiol. 2009;107:19181922. PubMed doi:10.1152/japplphysiol.00307.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Fletcher JRPfister TRMacIntosh BR. Energy cost of running and Achilles tendon stiffness in man and woman trained runners. Physiol Rep. 2013;1:00178. PubMed doi:10.1002/phy2.178

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Iaia FMHellsten YNielsen JJFernstrom MSahlin KBangsbo J. Four weeks of speed endurance training reduces energy expenditure during exercise and maintains muscle oxidative capacity despite a reduction in training volume. J Appl Physiol. 2009;106:7380. PubMed doi:10.1152/japplphysiol.90676.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Shaw AJIngham SAFolland JP. The valid measurement of running economy in runners. Med Sci Sports Exerc. 2014;46:19681973. PubMed doi:10.1249/MSS.0000000000000311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Willcockson MAWall-Scheffler CM. Reconsidering the effects of respiratory constraints on the optimal running speed. Med Sci Sports Exerc. 2012;44:13441350. PubMed doi:10.1249/MSS.0b013e318248d907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Steudel-Numbers KLWall-Scheffler CM. Optimal running speed and the evolution of hominin hunting strategies. J Hum Evol. 2009:56;355360. PubMed doi:10.1016/j.jhevol.2008.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Daniels JDaniels N. Running economy of elite male and female runners. Med Sci Sports Exerc. 1992;24:483489. PubMed doi:10.1249/00005768-199204000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Howley ETGlover ME. The caloric costs of running and walking one mile for men and women. Med Sci Sports. 1974;6:235237. PubMed

  • 14.

    Helgerud J. Maximal oxygen uptake, anaerobic threshold and running economy in women and men with similar performances level in marathons. Eur J Appl Physiol. 1994;68:155161. doi:10.1007/BF00244029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Helgerud JOyvind SHoff J. Are there differences in running economy at different velocities for well-trained distance runners? Eur J Appl Physiol. 2010;108:10991105. PubMed doi:10.1007/s00421-009-1218-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ingham SAWhyte GPPedlar CBailey DMDunman NNevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40:345350. PubMed doi:10.1249/mss.0b013e31815a83dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Morgan DWBransford DRCostill DLDaniels JTHowley ETKrahenhuhl GS. Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc. 1995;27:404409. PubMed doi:10.1249/00005768-199503000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Pollock ML. Submaximal and maximal working capacity of elite distance runners, part I: cardiorespiratory aspects. Ann NY Acad Sci. 1977;301:310322. PubMed doi:10.1111/j.1749-6632.1977.tb38209.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Lusk G. Science of Nutrition. Philadelphia, PA: Saunders; 1928.

  • 20.

    Tarnopolsky MARennie CDRobertshaw HAFedak-Tarnopolsky SNDevries MCHamadeh MJ. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol. 2007;292:R12711278. PubMed doi:10.1152/ajpregu.00472.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Romijn JCoyle ESidossis Let al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol. 1993;265:380391. PubMed

    • Search Google Scholar
    • Export Citation
  • 22.

    International Association of Athletics Federations. IAAF scoring tables of athletics-outdoors. http://www.iaaf.org/about-iaaf/documents/technical. 2014. Accessed January 5 2015.

    • Export Citation
  • 23.

    Bishop DJenkins DGMackinnon LT. The relationship between plasma lactate parameters, Wpeak and 1-h cycling performance in women. Med Sci Sports Exerc. 1998;30:12701275. PubMed doi:10.1097/00005768-199808000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Peronnet FMassicotte D. Table of non-protein respiratory quotient: an update. Can J Sport Sci. 1991;16:2329. PubMed

  • 25.

    Jeukendrup AEWallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med. 2005;26:S28S37. PubMed doi:10.1055/s-2004-830512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ralston HJ. Energy-speed relation and optimal speed during level walking. Int Z Angew Physiol. 1958;17:277283. PubMed

  • 27.

    Hill RJDavies PS. Energy expenditure during 2 wk of an ultra-endurance run around Australia. Med Sci Sports Exerc. 2001;33:148151. PubMed doi:10.1097/00005768-200101000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Raichlen DAArmstrong HLieberman DE. Calcaneus length determines running economy: implications for endurance running performance in modern humans and Neandartals. J Hum Evol. 2011;60:299308. PubMed doi:10.1016/j.jhevol.2010.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Arampatzis ADe Monte GKaramanidis KMorey-Klapsing GStafilidis SBruggemann GP. Influence of the muscle-tendon unit’s mechanical and morphological properties on running economy. J Exp Biol. 2006;209:33453357. PubMed doi:10.1242/jeb.02340

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Patton JFVogel JA. Cross-sectional and longitudinal evaluations of an endurance training programme. Med Sci Sports Exerc. 1977;9:100103. PubMed doi:10.1249/00005768-197709020-00005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Boyer KASilvernail JFHamill J. The role of running mileage on coordination patterns in running. J Appl Biomech. 2014;30:649654. PubMed doi:10.1123/jab.2013-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Baur HHirshmuller AMuller SCassel MMayer F. Is EMG of the lower leg dependent on weekly running mileage? Int J Sports Med. 2012;33:5357. PubMed doi:10.1055/s-0031-1286250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ghiani GMarongiu EMelis Fet al. Body composition changes affect energy cost of running during 12 months of specific diet and training in amateur athletes. Appl Physiol Nutr Metab. 2015;40:938944. PubMed doi:10.1139/apnm-2015-0023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Burnley MJones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci. 2007;7:6379. doi:10.1080/17461390701456148

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Carter HJones AMBarstow TJBurnley MWilliams CADoust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899907. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Goto KIshii NMizuno ATakamatsu K. Enhancement of fat metabolism by repeated bouts of moderate endurance exercise. J Appl Physiol. 2007;102:21582164. PubMed doi:10.1152/japplphysiol.01302.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Achten JJeukendup AE. Optimising fat oxidation through exercise and diet. Nutrition. 2004;20:716727. PubMed doi:10.1016/j.nut.2004.04.005

  • 38.

    Febbraio MASnow RJStathis CGHargreaves MCarey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77:28272831. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Parkin JMCarey MFZhao SFebbraio MA. Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Physiol. 1999;86:902908. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 117 117 22
Full Text Views 4 4 3
PDF Downloads 1 1 1
Altmetric Badge
PubMed
Google Scholar