Muscle Oxygenation Rather Than VO2max as a Strong Predictor of Performance in Sprint Canoe–Kayak

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To characterize the relationships between muscle oxygenation and performance during on- and off-water tests in highly trained sprint canoe–kayak athletes. Methods: A total of 30 athletes (19 kayakers and 11 canoeists) performed a maximal incremental test on a canoe or kayak ergometer for determination of VO2max and examination of the relation between peak power output (PPO) and physiological parameters. A subset of 21 athletes also performed a 200- and a 500- (for women) or 1000-m (for men) on-water time trial (TT). Near-infrared spectroscopy monitors were placed on the latissimus dorsi, biceps brachii, and vastus lateralis during all tests to assess changes in muscle O2 saturation (SmO2) and deoxyhemoglobin concentration ([HHb]). The minimum O2 oxygenation (SmO2min) and maximal O2 (Δ[HHb] extraction) were calculated for all subjects. Results: PPO was most strongly correlated with VO2max (R = .9), but there was also a large correlation between PPO and both SmO2min and Δ[HHb] in latissimus dorsi (R = −.5, R = .6) and vastus lateralis (R = −.6, R = .6, all P < .05). Multiple regression showed that 90% of the variance in 200-m performance was explained by both Δ[HHb] and SmO2min in the 3 muscles combined (P < .01) and 71% of the variance in 500-/1000-m performance was explained by Δ[HHb] in the 3 muscles (P < .01). This suggests that O2 extraction is a better predictor of performance than VO2max in sprint canoe–kayak. Conclusions: These results highlight the importance of peripheral adaptations in both short and long events and stress the relevance of adding muscle oxygenation measurements during testing and racing in sprint canoe–kayak.

The authors are with the Kinesiology Dept, Laval University, Québec, QC, Canada, and the Québec National Inst of Sport, Montréal, QC, Canada.

Billaut (francois.billaut@kin.ulaval.ca) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Byrnes WCKearney JT. Aerobic and anaerobic contributions during simulated canoe/kayak sprint events. Med Sci Sports Exerc. 1997;29(5):220.doi:10.1097/00005768-199705001-01254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Zamparo PCapelli CGuerrini G. Energetics of kayaking at submaximal and maximal speeds. Eur J Appl Physiol. 1999;80:542548. doi:10.1007/s004210050632

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Zouhla HLe Douairon Lahaye SBen Abderrahaman AMinter GHerbez RCastagna C. Energy system contribution to Olympic distances in flat water kayaking (500 m and 1000 m) in highly trained subjects. J Strength Cond Res. 2012;26(3):825831. PubMed ID: 22297414 doi:10.1519/JSC.0b013e31822766f7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bishop D. Physiological predictors of flat-water kayak performance in women. Eur J Appl Physiol. 2000;82(1–2):9197. doi:10.1007/s004210050656

  • 5.

    Fry RWMortin AR. Physiological and kinathropometric attributes of elite flatwater kayakists. Med Sci Sports Exerc. 1991;23(11):12971301. PubMed ID: 1766347 doi:10.1249/00005768-199111000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Tesch PA. Physiological characteristics of elite kayak paddlers. Can J Appl Physiol. 1983;8(2):8791. PubMed ID: 6883619

  • 7.

    van Someren KAPalmer GS. Prediction of 200-m sprint kayaking performance. Can J Appl Physiol. 2003;28(4):505517. PubMed ID: 12904631 doi:10.1139/h03-039

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Perrey SFerrari M. Muscle oximetry in sports science: a systematic review. Sports Med. 2018;48(3):597616. PubMed ID: 29177977 doi:10.1007/s40279-017-0820-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Dascombe BLaursen PBNosaka KPolglaze T. No effect of upper body compression garments in elite flat-water kayakers. Eur J Sport Sci. 2011;13(4):341349. PubMed ID: 23834538 doi:10.1080/17461391.2011.606842

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Borges TODascombe BBullock NCoutts AJ. Physiological characteristics of well-trained junior sprint kayak athletes. Int J Sports Physiol Perform. 2015;10(5):593599. PubMed ID: 25473923 doi:10.1123/ijspp.2014-0292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Price MJCampbell IG. Determination of peak oxygen uptake during upper body exercise. Ergonomics. 1997;40(4):491499. PubMed ID: 9140208 doi:10.1080/001401397188116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Michael JSRonney KBSmith R. The metabolic demands of kayaking: a review. J Sports Sci Med. 2008;7(1):17. PubMed ID: 24150127

  • 13.

    Tanner RGore C. Physiological Tests for Elite Athletes. 2nd ed. Champaign, IL: Human Kinetics; 2013.

  • 14.

    Billaut FBuchheit M. Repeated-sprint performance and vastus lateralis oxygenation: effect of limited O(2) availability. Scand J Med Sci Sports. 2013;23(3):e185193. PubMed ID: 23362832 doi:10.1111/sms.12052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ferrari MMuthalib MQuaresima V. The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos Trans A Math Phys Eng Sci. 2011;369(1955):45774590. PubMed ID: 22006907 doi:10.1098/rsta.2011.0230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hopkins WGMarshall SWBatterham AMHahnin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fleming NDonne BFletcher DMahony N. A biomechanical assessment of ergometer task specificity in elite flatwater kayakers. J Sports Sci Med. 2012;11(1):1625. PubMed ID: 24149118

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Nioka SMoser DLech Get al. Muscle deoxygenation in aerobic and anaerobic exercise. Adv Exp Med Biol. 1998;454:6370. PubMed ID: 9889877

  • 19.

    Bae SYHamaoka TKatsumura TShiga TOhno HHaga S. Comparison of muscle oxygen consumption measured by near infrared continuous wave spectroscopy during supramaximal and intermittent pedalling exercise. Int J Sports Med. 2000;21(3):168174. PubMed ID: 10834347 doi:10.1055/s-2000-8880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pelham TWBurke DGHolt LE. Sports Performance series: the flatwater canoe stroke. Strength Cond J. 1992;14(1):69.

  • 21.

    Buglione ALazzer SColli RIntroini EDi Prampero PE. Energetics of best performances in elite kayakers and canoeists. Med Sci Sports Exerc. 2011;43(5):877884. PubMed ID: 20962692 doi:10.1249/MSS.0b013e3181fdfdb7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stringer WWasserman KCasaburi RPórszász JMaehara KFrench W. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise. J Appl Physiol. 1994;76(4):14621467. PubMed ID: 8045820 doi:10.1152/jappl.1994.76.4.1462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nilsson JERosdahl HG. Contribution of leg-muscle forces to paddle force and kayak speed during maximal-effort flat-water paddling. Int J Sports Physiol Perform. 2016;11(1):2227. PubMed ID: 25849289 doi:10.1123/ijspp.2014-0030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Billat VFaina MSardella Fet al. A comparison of time to exhaustion at VO2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics. 1996;39(2):267277. PubMed ID: 8851531 doi:10.1080/00140139608964457

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Le Meur YLouis JAubry Aet al. Maximal exercise limitation in functionally overreached triathletes: role of cardiac adrenergic stimulation. J Appl Physiol. 2014;117(3):214222. PubMed ID: 24925979 doi:10.1152/japplphysiol.00191.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mollard PWoorons XLetournel Met al. Determinant factors of the decrease in aerobic performance in moderate acute hypoxia in women endurance athletes. Respir Physiol Neurobiol. 2007;159(2):178186. PubMed ID: 17766196 doi:10.1016/j.resp.2007.06.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lusina SJWarburton DEHatfield NGSheel AW. Muscle deoxygenation of upper-limb muscles during progressive arm-cranking exercise. Appl Physiol Nutr Metab. 2008;33(2):231238. PubMed ID: 18347677 doi:10.1139/h07-156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bassett DRHowley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):7084. PubMed ID: 10647532 doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Miura HAraki HMatoba HKitagawa K. Relationship among oxygenation, myoelectric activity, and lactic acid accumulation in vastus lateralis muscle during exercise with constant work rate. Int J Sports Med. 2000;21:180184. PubMed ID: 10834349 doi:10.1055/s-2000-301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Born DPStoggl TSwaren MBjorklund G. Near-infrared spectroscopy: more accurate than heart rate for monitoring intensity in running in hilly terrain. Int J Sports Physiol Perform. 2017;12(4):440447. PubMed ID: 27396389 doi:10.1123/ijspp.2016-0101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Crum EMO’Connor WJVan Loo LValckx MStannard SR. Validity and reliability of the Moxy oxygen monitor during incremental cycling exercise. Eur J Sport Sci. 2017;17(8):10371043. PubMed ID: 28557670 doi:10.1080/17461391.2017.1330899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Prefaut CDurand FMucci PCaillaud C. Exercise-induced arterial hypoxaemia in athletes. Sports Med. 2000;30(1):4761. PubMed ID: 10907757 doi:10.2165/00007256-200030010-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Buchheit MLaursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed ID: 23832851 doi:10.1007/s40279-013-0066-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Buchheit MAbbiss CRPeiffer JJLaursen PB. Performance and physiological responses during a sprint interval training session: relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol. 2012;112(2):767779. PubMed ID: 21667291 doi:10.1007/s00421-011-2021-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 27 27 20
Full Text Views 1 1 0
PDF Downloads 1 1 0

Altmetric Badge

PubMed

Google Scholar

Cited By