Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Speed skating leads to blood-flow restriction and deoxygenation in the lower limbs (especially the right leg) that may affect performance. Although the acute influence of such deoxygenation is not clearly understood, the authors tested whether remote ischemic preconditioning (RIPC) could modify muscular oxygenation and improve time-trial performance in that sport. Methods: Using a randomized, single-blind, placebo-controlled, crossover design, 9 elite speed skaters performed 1000-m on-ice time trials preceded by either RIPC of the upper limbs (3 × 5-min compression/5-min reperfusion cycles at 30 mm Hg >arterial systolic pressure) or placebo treatment (SHAM; 10 mm Hg). Changes in tissue saturation index, oxyhemoglobin–oxymyoglobin, deoxyhemoglobin–deoxymyoglobin, and total hemoglobin–myoglobin in the right vastus lateralis muscle were monitored using near-infrared spectroscopy (NIRS). Differences between RIPC and SHAM were analyzed using Cohen effect size (ES) ± 90% confidence limits and magnitude-based inferences. Results: Compared with SHAM, RIPC had a negligible effect on performance and NIRS variables. However, in a subgroup of sprinters (n = 5), RIPC likely lowered tissue saturation index at the beginning of the time trial (−6.1%; ES = −0.65) and likely increased deoxyhemoglobin–deoxymyoglobin at the beginning (3%; ES = 0.39), middle (2.9%; ES = 0.37), and end of the trial (−2.1%; ES = 0.27). In the middle section of the trial, these metabolic changes were concomitant with a possible increase in total hemoglobin–myoglobin. Conclusion: RIPC has no practical ergogenic impact on 1000-m long-track speed-skating performance in elite athletes. The relevance of using RIPC during training to increase physiological stress in sprinters particularly deserves further investigation.

The authors are with the Kinesiology Dept, Laval University, Québec City, QC, Canada.

Billaut (francois.billaut@kin.ulaval.ca) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Konings MJElferink-Gemser MTStoter IKvan der Meer DOtten EHettinga FJ. Performance characteristics of long-track speed skaters: a literature review. Sport Med. 2015;45(4):505516. doi:10.1007/s40279-014-0298-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Rundell KWNioka SChance B. Hemoglobin/myoglobin desaturation during speed skating. Med Sci Sports Exerc. 1997;29(2):248258. PubMed ID: 9044231 doi:10.1097/00005768-199702000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hettinga FJKonings MJCooper CEKingdom U. Differences in muscle oxygenation, perceived fatigue and recovery between long-track and short-track speed skating. Front Physiol. 2016;7:619. PubMed ID: 28018244 doi:10.3389/fphys.2016.00619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sharma VMarsh RCunniffe BCardinale MYellon DMDavidson SM. From protecting the heart to improving athletic performance—the benefits of local and remote ischaemic preconditioning. Cardiovasc Drugs Ther. 2015;29(6):573588. PubMed ID: 26477661 doi:10.1007/s10557-015-6621-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kimura MUeda KGoto Cet al. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2007;27(6):14031410. PubMed ID: 17446439 doi:10.1161/ATVBAHA.107.143578

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Enko KNakamura KYunoki Ket al. Intermittent arm ischemia induces vasodilatation of the contralateral upper limb. J Physiol Sci. 2011;61(6):507513. PubMed ID: 21901641 doi:10.1007/s12576-011-0172-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kido KSuga TTanaka Det al. Ischemic preconditioning accelerates muscle deoxygenation dynamics and enhances exercise endurance during the work-to-work test. Physiol Rep. 2015;3:12395. PubMed ID: 25952936 doi:10.14814/phy2.12395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Barbosa TCMachado ACBraz IDet al. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand J Med Sci Sport. 2015;25(3):356364. doi:10.1111/sms.12229

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Paradis-Deschênes PJoanisse DRBillaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake and force in strength-trained athletes. Appl Physiol Nutr Metab. 2016;41:938944. doi:10.1139/apnm-2015-0561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Incognito AVBurr JFMillar PJ. The effects of ischemic preconditioning on human exercise performance. Sport Med. 2016;46(4):531544. doi:10.1007/s40279-015-0433-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Marocolo Mda Mota GRSimim MAMAppell Coriolano HJ. Myths and facts about the effects of ischemic preconditioning on performance. Int J Sports Med. 2016;37(2):8796. PubMed ID: 26509376 doi:10.1055/s-0035-1564253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Berger MMMacholz FMairbäurl HBartsch P. Remote ischemic preconditioning for prevention of high altitude diseases: fact or fiction? J Appl Physiol. 2015;119(10):11431151. PubMed ID: 26089545 doi:10.1152/japplphysiol.00156.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sharma VCunniffe BVerma APCardinale MYellon D. Characterization of acute ischemia-related physiological responses associated with remote ischemic preconditioning: a randomized controlled, crossover human study. Physiol Rep. 2014;2(11):e12200. doi:10.14814/phy2.12200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Salvador FDe Aguiar ARLisboa FPereira KCruz RCaputo F. Ischemic preconditioning and exercise performance: a systematic review and meta-analysis. Int J Sports Physiol Perform. 2016;11(1):414. doi:10.1123/ijspp.2015-0204

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McIntyre JPRKilding AE. Effects of high-intensity intermittent priming on physiology and cycling performance. J Sports Sci. 2015;33(6):561567. PubMed ID: 25357090 doi:10.1080/02640414.2014.960882

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bailey SJVanhatalo AWilkerson DPDimenna FJJones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol. 2009;107(10):17431756. doi:10.1152/japplphysiol.00810.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Burnley MDoust JHJones AMTime AMJ. Time required for the restoration of normal heavy exercise VO2 following prior heavy exercise. J Appl Physiol. 2006;101(5):13201327. PubMed ID: 16857864 doi:10.1152/japplphysiol.00475.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ingham SAFudge BWPringle JSJones AM. Improvement of 800-m running performance with prior high-intensity exercise. Int J Sports Physiol Perform. 2013;8(1):7783. PubMed ID: 22868404 doi:10.1123/ijspp.8.1.77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Born DPZinner CHerlitz BRichter KHolmberg HCSperlich B. Muscle oxygenation asymmetry in ice speed skaters: not compensated by compression. Int J Sports Physiol Perform. 2014;9(1):5867. PubMed ID: 23239684 doi:10.1123/ijspp.2012-0210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Paradis-Deschênes PJoanisse DRBillaut F. Sex-specific impact of ischemic preconditioning on tissue oxygenation and maximal concentric force. Front Physiol. 2017;7:674. doi:10.3389/fpls.2017.00674

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Piucco TSoares RDiefenthaeler FMillet GMurias J. V˙O2 and muscle deoxygenation kinetics during skating: comparison between slide board and treadmill skating. Int J Sports Physiol Perform. 2017;15:120. doi:10.1123/ijspp.2017-0440

    • Search Google Scholar
    • Export Citation
  • 22.

    McCully KKHamaoka T. Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc Sport Sci Rev. 2000;28(3):123127. PubMed ID: 10916704 doi:10.1117/1.2805437

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Beekvelt MCColier WNWevers RAVan Engelen BG. Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle. J Appl Physiol. 2001;90(2):511519. PubMed ID: 11160049 doi:10.1152/jappl.2001.90.2.511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ferrari MMottola LQuaresima V. Principles, techniques, and limitations of near infrared spectroscopy. Can J Appl Physiol. 2004;29(4):463487. PubMed ID: 15328595 doi:10.1139/h04-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Van Beekvelt MCVan Engelen BGWevers RAColier WN. In vivo quantitative near-infrared spectroscopy in skeletal muscle during incremental isometric handgrip exercise. Clin Physiol Funct Imaging. 2002;22(3):210217. PubMed ID: 12076348 doi:10.1046/j.1475-097X.2002.00420.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Faiss RLéger BVesin JMet al. Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS ONE. 2013;8(2):e56522. doi:10.1371/journal.pone.0056522

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ahmetov IIDruzhevskaya AMLyubaeva EVPopov DVVinogradova OLWilliams AG. The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol. 2011;96(12):13021310. PubMed ID: 21930675 doi:10.1113/expphysiol.2011.060293

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Iazvikov VVSukhova ZIIvanitskaia VVMakarova LFPoluektova BP. Features of the ultrastructural organization of the muscles of skaters in relation to their sport specialization and muscle fiber composition [in Russian]. Arkh Anat Gistol Embriol. 1985;89(12):8790. PubMed ID: 4091688

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Jean-St-Michel EManlhiot CLi Jet al. Remote preconditioning improves maximal performance in highly trained athletes. Med Sci Sports Exerc. 2011;43(7):12801286. PubMed ID: 21131871 doi:10.1249/MSS.0b013e318206845d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tanaka DSuga TTanaka Tet al. Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. Physiol Biochem. 2016;37(8):614618. doi:10.1055/s-0035-1565141

    • Search Google Scholar
    • Export Citation
  • 32.

    Patterson SDBezodis NEGlaister MPattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2015;47(8):16521658. PubMed ID: 25412297 doi:10.1249/MSS.0000000000000576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kjeld TRasmussen MRJattu TNielsen HBSecher NH. Ischemic preconditioning of one forearm enhances static and dynamic apnea. Med Sci Sports Exerc. 2014;46(1):151155. PubMed ID: 23846166 doi:10.1249/MSS.0b013e3182a4090a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Foster CRundell KSnyder ACet al. Evidence for restricted muscle blood flow during speed skating. Med Sci Sports Exerc. 1999;31(10):14331440. PubMed ID: 10527316 doi:10.1097/00005768-199910000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    De Groot PCThijssen DHSanchez MEllenkamp RHopman MT. Ischemic preconditioning improves maximal performance in humans. Eur J Appl Physiol. 2010;108(1):141146. PubMed ID: 19760432 doi:10.1007/s00421-009-1195-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Lisbôa FDTurnes TCruz RSORaimundo JAGPereira GSCaputo F. The time dependence of the effect of ischemic preconditioning on successive sprint swimming performance. J Sci Med Sport. 2017;20(5):507511. doi:10.1016/j.jsams.2016.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Van Der Zwaard SJaspers RTBlokland IJet al. Oxygenation threshold derived from near-infrared spectroscopy: reliability and its relationship with the first ventilatory threshold. PLoS ONE. 2016;11(9):e0162914. doi:10.1371/journal.pone.0162914

    • Crossref
    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 34 34 15
Full Text Views 0 0 0
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar