Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate single-day time-to-exhaustion (TTE) and time-trial (TT) -based laboratory tests values of critical power (CP), W prime (W′), and respective oxygen-uptake-kinetic responses. Methods: Twelve cyclists performed a maximal ramp test followed by 3 TTE and 3 TT efforts interspersed by 60 min recovery between efforts. Oxygen uptake (V˙O2) was measured during all trials. The mean response time was calculated as a description of the overall V˙O2-kinetic response from the onset to 2 min of exercise. Results: TTE-determined CP was 279 ± 52 W, and TT-determined CP was 276 ± 50 W (P = .237). Values of W′ were 14.3 ± 3.4 kJ (TTE W′) and 16.5 ± 4.2 kJ (TT W′) (P = .028). While a high level of agreement (−12 to 17 W) and a low prediction error of 2.7% were established for CP, for W′ limits of agreements were markedly lower (−8 to 3.7 kJ), with a prediction error of 18.8%. The mean standard error for TTE CP values was significantly higher than that for TT CP values (2.4% ± 1.9% vs 1.2% ± 0.7% W). The standard errors for TTE W′ and TT W′ were 11.2% ± 8.1% and 5.6% ± 3.6%, respectively. The V˙O2 response was significantly faster during TT (~22 s) than TTE (~28 s). Conclusions: The TT protocol with a 60-min recovery period offers a valid, time-saving, and less error-filled alternative to conventional and more recent testing methods. Results, however, cannot be transferred to W′.

Karsten and Naclerio are with the Dept of Life and Sport Science, University of Greenwich, London, United Kingdom. Karsten is also with the Dept of Exercise and Sport Science, Lunex International University of Health, Exercise and Sports, Differdange, Luxembourg. Baker is with Palmares Ltd, London, United Kingdom. Klose is with Münster University, Münster, Germany. Bianco is with the University of Palermo, Palermo, Italy. Nimmerichter is with Sport and Exercise Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria.

Karsten (B.Karsten@greenwich.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Jones AMVanhatalo ABurnley MMorton RHPoole DC. Critical power: implications for determination of V˙O2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed doi:10.1249/MSS.0b013e3181d9cf7f

    • Search Google Scholar
    • Export Citation
  • 2.

    Burnley MDoust JJones A. Time required for the restoration of normal heavy exercise V˙O2 kinetics following prior heavy exercise. J Appl Physiol. 2006;101:13201327. PubMed doi:10.1152/japplphysiol.00475.2006

    • Search Google Scholar
    • Export Citation
  • 3.

    Vanhatalo APoole DCDiMenna FJBailey SJJones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):700707. PubMed doi:10.1152/ajpregu.00761.2010

    • Search Google Scholar
    • Export Citation
  • 4.

    Galbraith AHopker JLelliott S. A single-visit field test of critical speed. Int J Sports Physiol Perform. 2014;9(6):931935. doi:10.1123/ijspp.2013-0507

    • Search Google Scholar
    • Export Citation
  • 5.

    Karsten BJobson SHopker JJimenez ABeedie C. High agreement between laboratory and field estimates of critical power in cycling. Int J Sports Med. 2014;35(4):298303. PubMed doi:10.1055/s-0033-1349844

    • Search Google Scholar
    • Export Citation
  • 6.

    Karsten BJobson SHopker JStevens LBeedie C. Validity and reliability of critical power field testing. Eur J Appl Physiol. 2015;115(1):197204. PubMed doi:10.1007/s00421-014-3001-z

    • Search Google Scholar
    • Export Citation
  • 7.

    Karsten BHopker JJobson SAet al. Comparison of inter-trial recovery times for the determination of critical power and W′ in cycling. J Sports Sci. 2017;34(14):14201425. PubMed doi:10.1080/02640414.2016.1215500

    • Search Google Scholar
    • Export Citation
  • 8.

    Laursen PBFrancis GTAbbiss CRNewton MJNosaka K. Reliability of time-to-exhaustion versus time-trial running tests in runners. Med Sci Sports Exerc. 2007;39(8):13741379. PubMed doi:10.1249/mss.0b013e31806010f5

    • Search Google Scholar
    • Export Citation
  • 9.

    Barker TPoole DCNoble MLBarstow TJ. Human critical power–oxygen uptake relationship at different pedalling frequencies. Exp Physiol. 2006;91(3):621632. PubMed doi:10.1113/expphysiol.2005.032789

    • Search Google Scholar
    • Export Citation
  • 10.

    Vanhatalo ABlack MIDiMenna FJet al. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;0:117. doi:10.1113/JP271879

    • Search Google Scholar
    • Export Citation
  • 11.

    Black MJones ABailey SVanhatalo A. Self-pacing increases critical power and improves performance during severe-intensity exercise. Appl Physiol Nutr Metab. 2015;40(7):662670. PubMed

    • Search Google Scholar
    • Export Citation
  • 12.

    Bailey SJVanhatalo AWilkerson DPDimenna FJJones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol. 2009;107(6):17431756. PubMed doi:10.1152/japplphysiol.00810.2009

    • Search Google Scholar
    • Export Citation
  • 13.

    Caritá RACGreco CCDenadai BS. The positive effects of priming exercise on oxygen uptake kinetics and high-intensity exercise performance are not magnified by a fast-start pacing strategy in trained cyclists. PLoS ONE. 2014;9(4):e95202. doi:10.1371/journal.pone.0095202

    • Search Google Scholar
    • Export Citation
  • 14.

    Jones AMWilkerson DPBurnley MKoppo K. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med Sci Sports Exerc. 2003;35(12):20852092. PubMed doi:10.1249/01.MSS.0000099108.55944.C4

    • Search Google Scholar
    • Export Citation
  • 15.

    Bishop DBonetti DDawson B. The influence of pacing strategy on VO2 and supramaximal kayak performance. Med Sci Sport Exerc. 2002;34(4):10411047.

    • Search Google Scholar
    • Export Citation
  • 16.

    Wipp BRossiter H. The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AMPoole DC eds. Oxygen Uptake Kinetics in Sport Exercise and Medicine. Oxon, UK: Routledge; 2005:6294.

    • Search Google Scholar
    • Export Citation
  • 17.

    Bailey SJVanhatalo ABlack MIDiMenna FJJones AM. Effects of priming and pacing strategy on oxygen-uptake kinetics and cycling performance. Int J Sports Physiol Perform. 2016;11(4):440447. PubMed doi:10.1123/ijspp.2015-0292

    • Search Google Scholar
    • Export Citation
  • 18.

    Bender RLange S. Adjusting for multiple testing—when and how? J Clin Epidemiol. 2001;54(4):343349. PubMed

  • 19.

    Triska CTschan HTazreiter GNimmerichter A. Critical power in laboratory and field conditions using single-visit maximal effort trials. Int J Sports Med. 2015;36(13):10631068. PubMed doi:10.1055/s-0035-1549958

    • Search Google Scholar
    • Export Citation
  • 20.

    Atkinson GNevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217238. PubMed

    • Search Google Scholar
    • Export Citation
  • 21.

    Galbraith AHopker JGJobson SAPassfield L. A novel field test to determine critical speed. J Sports Med Doping Stud. 2011;1:101. doi:10.4172/2161-0673.1000101

    • Search Google Scholar
    • Export Citation
  • 22.

    Bishop DJenkins DG. The influence of recovery duration between periods of exercise on the critical power function. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):115120. PubMed

    • Search Google Scholar
    • Export Citation
  • 23.

    Bailey SJVanhatalo ADiMenna FJWilkerson DPJones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. PubMed doi:10.1249/MSS.0b013e3181ef3dce

    • Search Google Scholar
    • Export Citation
  • 24.

    Jones AMWilkerson DPVanhatalo ABurnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18(5):615626. PubMed doi:10.1111/j.1600-0838.2007.00725.x

    • Search Google Scholar
    • Export Citation
  • 25.

    Hettinga FJDe Koning JJFoster C. VO2 response in supramaximal cycling time trial exercise of 750 to 4000 m. Med Sci Sports Exerc. 2009;41(1):230236. PubMed doi:10.1249/MSS.0b013e3181831f0f

    • Search Google Scholar
    • Export Citation
  • 26.

    Burnley MDavison GBaker JR. Effects of priming exercise on VO2 kinetics and the power–duration relationship. Med Sci Sports Exerc. 2011;43(11):21712179. PubMed doi:10.1249/MSS.0b013e31821ff26d

    • Search Google Scholar
    • Export Citation
  • 27.

    Jones AMKoppo KBurnley M. Effects of prior exercise on metabolic and gas exchange responses to exercise. Sports Med. 2003;33(13):949971. PubMed

    • Search Google Scholar
    • Export Citation
  • 28.

    Nimmerichter ANovak NTriska CPrinz BBreese BC. Validity of treadmill-derived critical speed on predicting 5000-meter track-running performance. J Strength Cond Res. 2016:1. doi:10.1519/JSC.0000000000001529

    • Search Google Scholar
    • Export Citation
  • 29.

    Brickley GDoust JWilliams CA. Physiological responses during exercise to exhaustion at critical power. Eur J Appl Physiol. 2002;88(1–2):146151. PubMed doi:10.1007/s00421-002-0706-1

    • Search Google Scholar
    • Export Citation
  • 30.

    Currell KJeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297316. PubMed

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 6
Full Text Views 0 0 0
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar