Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To investigate whether oxygen-uptake (V˙O2) kinetics and simulated 4-km cycling performance are synergistically improved by prior “priming” exercise and an all-out starting strategy. Methods: Nine men completed 4 target work trials (114 ± 17 kJ) to assess V˙O2 kinetics and cycling performance in a repeated-measures, crossover experimental design. Trials were initiated with either a 12-s all-out start or a self-selected start and preceded by prior severe-intensity (70%Δ) priming exercise or no priming exercise. Results: The V˙O2 mean response time (MRT) was lower (indicative of faster V˙O2 kinetics) in the all-out primed condition (20 ± 6 s) than in the all-out unprimed (23 ± 6 s), self-paced-unprimed (42 ± 13 s), and self-paced-primed (42 ± 11 s) trials (P < .05), with the V˙O2 MRT also lower in the all-out unprimed than the self-paced unprimed and self-paced primed trials (P < .05). Trial-completion time was shorter (performance was enhanced) in the all-out primed trial (402 ± 14 s) than in the all-out unprimed (408 ± 14 s), self-paced unprimed (411 ± 16 s), and self-paced primed (411 ± 19 s) trials (P < .05), with no differences between the latter 3 trials. Conclusions: The findings from this study suggest that combining severe-intensity priming exercise with a short-duration all-out starting strategy can expedite the adjustment of V˙O2 and lower completion time during a cycling performance trial to a greater extent than either intervention administered independently. These results might have implications for optimizing performance in short-duration high-intensity competitive events such as a 4-km cycling time trial.

Brock, Antonellis, Black, Vanhatalo, and Jones are with Sport and Health Sciences, University of Exeter, Exeter, United Kingdom. DiMenna is with the Dept of Biobehavioral Sciences, Columbia University, New York, NY. Bailey is with the School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom

Bailey (S.Bailey2@lboro.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Whipp BJWasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972;33:351356. PubMed

  • 2.

    Krustrup PJones AMWilkerson DPCalbet JABangsbo J. Muscular and pulmonary O2 uptake kinetics during moderate- and high-intensity sub-maximal knee-extensor exercise in humans. J Physiol. 2009;587:18431856. PubMed doi:10.1113/jphysiol.2008.166397

    • Search Google Scholar
    • Export Citation
  • 3.

    Allen DGLamb GDWesterblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88:287332. PubMed doi:10.1152/physrev.00015.2007

    • Search Google Scholar
    • Export Citation
  • 4.

    Poole DCJones AM. Oxygen uptake kinetics. Compr Physiol. 2012;2:933996. PubMed

  • 5.

    Burnley MJones AM. Oxygen uptake kinetics as a determinant of sports performance. Eur J Sports Sci. 2007;7:6379. doi:10.1080/17461390701456148

    • Search Google Scholar
    • Export Citation
  • 6.

    Aisbett BLerossignol PMcConell GKAbbiss CRSnow R. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc. 2009a;41:19651971. PubMed doi:10.1249/MSS.0b013e3181a2aa78

    • Search Google Scholar
    • Export Citation
  • 7.

    Aisbett BLerossignol PMcConell GKAbbiss CRSnow R. Effects of starting strategy on 5-min cycling time-trial performance. J Sports Sci. 2009b;27:12011209. PubMed doi:10.1080/02640410903114372

    • Search Google Scholar
    • Export Citation
  • 8.

    Bailey SJVanhatalo ADiMenna FJWilkerson DPJones AM. Fast-start strategy improves V˙O2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43:457467. PubMed doi:10.1249/MSS.0b013e3181ef3dce

    • Search Google Scholar
    • Export Citation
  • 9.

    Bailey SJVanhatalo AWilkerson DPDimenna FJJones AM. Optimizing the “priming” effect: influence of prior exercise intensity and recovery duration on O2 uptake kinetics and severe-intensity exercise tolerance. J Appl Physiol. 2009;107:17431756. PubMed doi:10.1152/japplphysiol.00810.2009

    • Search Google Scholar
    • Export Citation
  • 10.

    Bishop DBonetti DDawson B. The influence of pacing strategy on V˙O2 and supramaximal kayak performance. Med Sci Sports Exerc. 2002;34:10411047. PubMed doi:10.1097/00005768-200206000-00022

    • Search Google Scholar
    • Export Citation
  • 11.

    Burnley MDoust JHJones AM. Effects of prior warm-up regime on severe-intensity cycling performance. Med Sci Sports Exerc. 2005;37:838845. PubMed doi:10.1249/01.MSS.0000162617.18250.77

    • Search Google Scholar
    • Export Citation
  • 12.

    de Koning JJBobbert MFFoster C. Determination of optimal pacing strategy in track cycling with an energy flow model. J Sci Med Sport. 1999;2:266277. PubMed doi:10.1016/S1440-2440(99)80178-9

    • Search Google Scholar
    • Export Citation
  • 13.

    Hajoglou AFoster CDe Koning JJLucia AKernozek TWPorcari JP. Effect of warm-up on cycle time trial performance. Med Sci Sports Exerc. 2005;37:16081614. PubMed doi:10.1249/01.mss.0000177589.02381.0a

    • Search Google Scholar
    • Export Citation
  • 14.

    Hettinga FJde Koning JJFoster C. V˙O2 response in supramaximal cycling time trial exercise of 750 to 4000 m. Med Sci Sports Exerc. 2009;41:230236. PubMed doi:10.1249/MSS.0b013e3181831f0f

    • Search Google Scholar
    • Export Citation
  • 15.

    Ingham SAFudge BWPringle JSJones AM. Improvement of 800-mrunning performance with prior high-intensity exercise. Int J Sports Physiol Perform. 2013;8:7783. PubMed doi:10.1123/ijspp.8.1.77

    • Search Google Scholar
    • Export Citation
  • 16.

    Jones AMWilkerson DPBurnley MKoppo K. Prior heavy exercise enhances performance during subsequent perimaximal exercise. Med Sci Sports Exerc. 2003;35:20852092. PubMed doi:10.1249/01.MSS.0000099108.55944.C4

    • Search Google Scholar
    • Export Citation
  • 17.

    Jones AMWilkerson DPVanhatalo ABurnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18:615626. PubMed doi:10.1111/j.1600-0838.2007.00725.x

    • Search Google Scholar
    • Export Citation
  • 18.

    Palmer CDJones AMKennedy GJCotter JD. Effects of prior heavy exercise on energy supply and 4000-m cycling performance. Med Sci Sports Exerc. 2009;41:221229. PubMed doi:10.1249/MSS.0b013e31818313b6

    • Search Google Scholar
    • Export Citation
  • 19.

    van Ingen Schenau GJde Koning JJde Groot G. The distribution of anaerobic energy in 1000 and 4000 meter cycling bouts. Int J Sports Med. 1992;13:447451. PubMed doi:10.1055/s-2007-1021296

    • Search Google Scholar
    • Export Citation
  • 20.

    Bailey SJVanhatalo ABlack MIDiMenna FJJones AM. Effects of priming and pacing strategy on oxygen-uptake kinetics and cycling performance. Int J Sports Physiol Perform. 2016;11:440447. PubMed doi:10.1123/ijspp.2015-0292

    • Search Google Scholar
    • Export Citation
  • 21.

    Wood MABailey SJJones AM. Influence of all-out start duration on pulmonary oxygen uptake kinetics and high-intensity exercise performance. J Strength Cond Res. 2014;28:21872194. PubMed doi:10.1519/JSC.0000000000000399

    • Search Google Scholar
    • Export Citation
  • 22.

    Koga SPoole DCFerreira LFet al. Spatial heterogeneity of quadriceps muscle deoxygenation kinetics during cycle exercise. J Appl Physiol. 2007;103:20492056. PubMed doi:10.1152/japplphysiol.00627.2007

    • Search Google Scholar
    • Export Citation
  • 23.

    Santos Rde AKiss MASilva-Cavalcante MDet al. Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PLoS ONE. 2013;8:75399. PubMed doi:10.1371/journal.pone.0075399

    • Search Google Scholar
    • Export Citation
  • 24.

    Caritá RAGreco CCDenadai BS. The positive effects of priming exercise on oxygen uptake kinetics and high-intensity exercise performance are not magnified by a fast-start pacing strategy in trained cyclists. PLoS One. 2014;9:e95202. PubMed doi:10.1371/journal.pone.0095202

    • Search Google Scholar
    • Export Citation
  • 25.

    Bangsbo JKrustrup PGonzález-Alonso JSaltin B. ATP production and efficiency of human skeletal muscle during intense exercise: effect of previous exercise. Am J Physiol Endocrinol Metab. 2001;280:E956964. PubMed

    • Search Google Scholar
    • Export Citation
  • 26.

    Krustrup PGonzález-Alonso JQuistorff BBangsbo J. Muscle heat production and anaerobic energy turnover during repeated intense dynamic exercise in humans. J Physiol. 2001;536:947956. PubMed doi:10.1111/j.1469-7793.2001.00947.x

    • Search Google Scholar
    • Export Citation
  • 27.

    Bailey SJFulford JVanhatalo Aet al. Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. J Appl Physiol. 2010;109:135148. PubMed doi:10.1152/japplphysiol.00046.2010

    • Search Google Scholar
    • Export Citation
  • 28.

    Grassi B. Delayed metabolic activation of oxidative phosphorylation in skeletal muscle at exercise onset. Med Sci Sports Exerc. 2005;37:15671573. PubMed doi:10.1249/01.mss.0000177472.67419.0a

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 5 5 5
Full Text Views 1 1 1
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar