Caffeine and Physiological Responses to Submaximal Exercise: A Meta-Analysis

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

The aim of this study was to carry out a systematic review and meta-analysis of the effects of caffeine supplementation on physiological responses to submaximal exercise. A total of 26 studies met the inclusion criteria of adopting double-blind, randomized crossover designs that included a sustained (5–30 min) fixed-intensity bout of submaximal exercise (constrained to 60–85% maximal rate of oxygen consumption) using a standard caffeine dose of 3–6 mg·kg−1 administered 30–90 min prior to exercise. Meta-analyses were completed using a random-effects model, and data are presented as raw mean difference (D) with associated 95% confidence limits (CLs). Relative to placebo, caffeine led to significant increases in submaximal measures of minute ventilation (D = 3.36 L·min−1; 95% CL, 1.63–5.08; P = .0001; n = 73), blood lactate (D = 0.69 mmol·L−1; 95% CL, 0.46–0.93; P < .00001; n = 208), and blood glucose (D = 0.42 mmol·L−1; 95% CL, 0.29–0.55; P < .00001; n = 129). In contrast, caffeine had a suppressive effect on ratings of perceived exertion (D = −0.8; 95% CL, −1.1 to −0.6; P < .00001; n = 147). Caffeine had no effect on measures of heart rate (P = .99; n = 207), respiratory exchange ratio (P = .18; n = 181), or oxygen consumption (P = .92; n = 203). The positive effects of caffeine supplementation on sustained high-intensity exercise performance are widely accepted, although the mechanisms to explain that response are currently unresolved. This meta-analysis has revealed clear effects of caffeine on various physiological responses during submaximal exercise, which may help explain its ergogenic action.

The authors are with the School of Sport, Health and Applied Sciences, St Mary’s University, Twickenham, United Kingdom.

Glaister (mark.glaister@stmarys.ac.uk) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Burke LMDesbrow BSpriet L. Caffeine for Sports Performance. Champaign, IL: Human Kinetics; 2013.

  • 2.

    Glaister MMuniz-Pumares DPatterson SDFoley PMcInnes G. Caffeine supplementation and peak anaerobic power output. Eur J Sport Sci. 2015;15(5):400406. PubMed doi:10.1080/17461391.2014.962619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Glaister MHowatson GAbraham CSet al. Caffeine supplementation and multiple sprint running performance. Med Sci Sports Exerc. 2008;40(10):18351840. PubMed doi:10.1249/MSS.0b013e31817a8ad2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):21132119. PubMed doi:10.1249/01.mss.0000178219.18086.9e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Acker-Hewitt TLShafer BMSaunders MJGoh QLuden ND. Independent and combined effects of carbohydrate and caffeine ingestion on aerobic cycling performance in the fed state. Appl Physiol Nutr Metab. 2012;37(2):276283. PubMed doi:10.1139/h11-160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Anderson MEBruce CRFraser SFet al. Improved 2000-meter rowing performance in competitive oarswomen after caffeine ingestion. Int J Sport Nutr Exerc Metab. 2000;10(4):464475. PubMed doi:10.1123/ijsnem.10.4.464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bell DGJacobs IZamecnik J. Effects of caffeine, ephedrine and their combination on time to exhaustion during high-intensity exercise. Eur J Appl Physiol Occup Physiol. 1998;77(5):427433. PubMed doi:10.1007/s004210050355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bruce CRAnderson MEFraser SFet al. Enhancement of 2000-m rowing performance after caffeine ingestion. Med Sci Sports Exerc. 2000;32(11):19581963. PubMed doi:10.1097/00005768-200011000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Casal DCLeon AS. Failure of caffeine to affect substrate utilisation during prolonged running. Med Sci Sports Exerc. 1985;17(1):174179. PubMed doi:10.1249/00005768-198502000-00029

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    McClaran SRWetter TJ. Low doses of caffeine reduce heart rate during submaximal cycle ergometry. J Int Soc Sports Nutr. 2007;4:11. PubMed doi:10.1186/1550-2783-4-11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tarnopolsky MAAtkinson SAMacDougall JDSale DGSutton JR. Physiological responses to caffeine during endurance running in habitual caffeine users. Med Sci Sports Exerc. 1989;21(4):418424. PubMed doi:10.1249/00005768-198908000-00013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cruz RSAlves de Aguiar RTurnes TGuglielmo LGBeneke RCaputo F. Caffeine affects time to exhaustion and substrate oxidation during cycling at maximal lactate steady state. Nutrients. 2015;7(7):52545264. PubMed doi:10.3390/nu7075219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jenkins NTTrilk JLSinghal AO’Connor PJCureton KJ. Ergogenic effects of low doses of caffeine on cycling performance. Int J Sport Nutr Exerc Metab. 2008;18(3):328342. PubMed doi:10.1123/ijsnem.18.3.328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bell DGMcLellan TM. Exercise endurance 1, 3, and 6 h after caffeine ingestion in caffeine users and nonusers. J Appl Physiol. 2002;93(4):12271234. PubMed doi:10.1152/japplphysiol.00187.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Black CDWaddell DEGonglach AR. Caffeine’s ergogenic effects on cycling: neuromuscular and perceptual factors. Med Sci Sports Exerc. 2015;47(6):11451158. PubMed doi:10.1249/MSS.0000000000000513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Demura SYamada TTerasawa N. Effect of coffee ingestion on physiological responses and ratings of perceived exertion during submaximal endurance exercise. Percept Mot Skills. 2007;105(3):11091116. doi:10.2466/pms.105.4.1109-1116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Graham TEHelge JWMacLean DAKiens BRichter EA. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J Physiol. 2000;529(3):837847. doi:10.1111/j.1469-7793.2000.00837.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Graham TESpriet LL. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1995;78(3):867874. PubMed doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Greer FFriars DGraham TE. Comparison of caffeine and theophylline ingestion: exercise metabolism and endurance. J Appl Physiol. 2000;89(5):18371844. PubMed doi:10.1152/jappl.2000.89.5.1837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Olcina GJTimóna RMuñoz D. Caffeine ingestion effects on oxidative stress in a steady-state test at 75%V˙O2max. Sci Sports. 2008;23(2):8790. doi:10.1016/j.scispo.2007.10.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Roy BDBosman MJTarnopolsky MA. An acute oral dose of caffeine does not alter glucose kinetics during prolonged dynamic exercise in trained endurance athletes. Eur J Appl Physiol. 2001;85(3):280286. doi:10.1007/s004210100456

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Toner MMKirkendall DTDelio DJChase JMCleary PAFox EL. Metabolic and cardiovascular responses to exercise with caffeine. Ergonomics. 1982;25(12):11751183. PubMed doi:10.1080/00140138208925074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Van Soeren MHGraham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85(4):14931501. doi:10.1152/jappl.1998.85.4.1493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Costill DLDalsky GPFink WJ. Effects of caffeine ingestion on metabolism and exercise performance. Med Sci Sports. 1978;10(3):155158.

  • 25.

    Giles DMaclaren D. Effects of caffeine and glucose ingestion on metabolic and respiratory functions during prolonged exercise. J Sports Sci. 1984;2(1):3546. doi:10.1080/02640418408729694

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Stadheim HKKvamme BOlsen RDrevon CAIvy JLJensen L. Caffeine increases performance in cross-country double-poling time trial exercise. Med Sci Sports Exerc. 2013;45(11):21752183. doi:10.1249/MSS.0b013e3182967948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Graham TE. Caffeine and exercise. Sports Med. 2001;31(11):785807. PubMed doi:10.2165/00007256-200131110-00002

  • 28.

    Graham TEBattram DSDela FEl-Sohemy AThong FSL. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33(6):13111318. doi:10.1139/H08-129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):13191334. PubMed doi:10.1139/H08-130

  • 30.

    Doherty MSmith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15(2):6978. PubMed doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Fredholm BBBattig KHolmen JNehlig AZvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51(1):83133. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Goldstein ERZiegenfuss TKalman Det al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):115. doi:10.1186/1550-2783-7-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Nehlig ADebry G. Caffeine and sports activity: a review. Int J Sports Med. 1994;15(5):215223. PubMed doi:10.1055/s-2007-1021049

  • 34.

    Tarnopolsky MA. Effect of caffeine on the neuromuscular system-potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33(6):12841289. doi:10.1139/H08-121

  • 35.

    Warren GLPark NDMaresca RDMcKibans KIMillard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):13751387. PubMed doi:10.1249/MSS.0b013e3181cabbd8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Stadheim HKSpencer MOlsen RJensen J. Caffeine and performance over consecutive days of simulated competition. Med Sci Sports Exerc. 2014;46(9):17871796. PubMed doi:10.1249/MSS.0000000000000288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bassett DRHowley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):7084. PubMed doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Doherty MSmith PMHughes MGDavison RCR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004:22(7):637643. PubMed doi:10.1080/02640410310001655741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298.

  • 40.

    Daniels JWMolé PAShaffrath JDStebbins CI. Effects of caffeine on blood pressure, heart rate, and forearm blood flow during dynamic leg exercise. J Appl Physiol. 1998;85(1):154159. PubMed doi:10.1152/jappl.1998.85.1.154

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Graham TEHibbert ESathasivam P. Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol. 1998;85(3):883889. doi:10.1152/jappl.1998.85.3.883

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Borenstein MHedges LVHiggins JPTRothstein HR. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd; 2009.

  • 43.

    Higgins JPThompson SGDeeks JJAltman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557560. PubMed doi:10.1136/bmj.327.7414.557

  • 44.

    Ioannidis JPAPatsopoulos NAEvangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335:914916. PubMed doi:10.1136/bmj.39343.408449.80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Higgins JPThompson SG. Quantifying heterogeneity in a meta analysis. Stat Med. 2002;21:15391558. PubMed doi:10.1002/sim.1186

  • 46.

    Koupenova MRavid K. Adenosine, adenosine receptors and their role in glucose homeostasis and lipid metabolism  [published online ahead of print 2013]. J Cell Physiol. doi:10.1002/jcp.24352

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Layland JCarrick DLee MOldroyd KBerry C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. 2014;7(6):581591. doi:10.1016/j.jcin.2014.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Benarroch EE. Adenosine and its receptors: multiple modulatory functions and potential therapeutic targets for neurologic disease. Neurology. 2008;70(3):231236. PubMed doi:10.1212/01.wnl.0000297939.18236.ec

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Biaggioni IOlafsson BRobertson RMHollister ASRobertson D. Cardiovascular and respiratory effects of adenosine in conscious man: evidence for chemoreceptor activation. Circ Res. 1987;61(6):779786. PubMed doi:10.1161/01.RES.61.6.779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Bergman BCHorning MACasazza GAWolfel EEButterfield GEBrooks GA. Endurance training increases gluconeogenesis during rest and exercise in men. Am J Physiol Endocrinol Metab. 2000;278(2):244251. PubMed doi:10.1152/ajpendo.2000.278.2.E244

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Budohoski LChalliss RAMcManus BNewsholme EA. Effects of analogues of adenosine and methyl xanthines on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1984;167(1):14. PubMed doi:10.1016/0014-5793(84)80820-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Challis RABudohoski LMcManus BNewsholme EA. Effects of an adenosine-receptor antagonist on insulin-resistance in soleus muscle from obese Zucker rats. Biochem J. 1984;221(3):915917. PubMed doi:10.1042/bj2210915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Espinal JChalliss RANewsholme EA. Effect of adenosine deaminase and an adenosine analogue on insulin sensitivity in soleus muscle of the rat. FEBS Lett. 1983;158(1):103106. doi:10.1016/0014-5793(83)80685-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Glaister MWilliams BHMuniz-Pumares DBalsalobre-Fernández CFoley P. The effects of caffeine supplementation on physiological responses to submaximal exercise in endurance-trained men. PLoS ONE. 2016;11(8):e0161375. PubMed doi:10.1371/journal.pone.0161375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Angello DABerne RMCoddington NM. Adenosine and insulin mediate glucose uptake in normoxic rat hearts by different mechanisms. Am J Physiol. 1993;265(3):H880H885.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Thong FSLDerave WKiens Bet al. Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes. 2002;51(3):583590. PubMed doi:10.2337/diabetes.51.3.583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Goedecke JHSt. Clair Gibson AGrobler LCollins MNoakes TDLambert EV. Determinants of the variability in respiratory exchange ratio at rest and during exercise in trained athletes. Am J Physiol Endocrinol Metab. 2000;279(6):E1325E1334. doi:10.1152/ajpendo.2000.279.6.E1325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Péronnet FAguilaniu B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: a critical reappraisal. Respir Physiol Neurobiol. 2006;150(1):418. doi:10.1016/j.resp.2005.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Howell LLCoffin VLSpealman RD. Behavioral and physiological effects of xanthines in nonhuman primates. Psychopharmacology. 1997;129(1):114. doi:10.1007/s002130050155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Lahiri SMitchell CHReigada DRoy ACherniack NS. Purines, the carotid body and respiration. Respir Physiol Neurobiol. 2007;157(1):123129. PubMed doi:10.1016/j.resp.2007.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Rongen GABrooks SCPollard MJet al. Effect of adenosine on heart rate variability in humans. Clin Sci. 1999;96(6):597604. PubMed doi:10.1042/cs0960597

  • 62.

    Hu XAdebiyi MGLuo Jet al. Sustained elevated adenosine via ADORA2B promotes chronic pain through neuro-immune interaction. Cell Rep. 2016;16(1):106119. PubMed doi:10.1016/j.celrep.2016.05.080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 153 152 58
Full Text Views 11 11 3
PDF Downloads 5 5 0
Altmetric Badge
PubMed
Google Scholar
Cited By