Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Practitioners have, for many years, argued that athletic sprinters should optimize front-side mechanics (leg motions occurring in front of the extended line through the torso) and minimize back-side mechanics. This study aimed to investigate if variables related to front- and back-side mechanics can be distinguished from other previously highlighted kinematic variables (spatiotemporal variables and variables related to segment configuration and velocities at touchdown) in how they statistically predict performance. A total of 24 competitive sprinters (age: 23.1 [3.4] y, height: 1.81 [0.06] m, body mass: 75.7 [5.6] kg, and 100-m personal best: 10.86 [0.22] s) performed two 20-m starts from block and 2 to 3 flying sprints over 20 m. Kinematics were recorded in 3D using a motion tracking system with 21 cameras at a 250 Hz sampling rate. Several front- and back-side variables, including thigh (r = .64) and knee angle (r = .51) at lift-off and maximal thigh extension (r = .66), were largely correlated (P < .05) with accelerated running performance, and these variables displayed significantly higher correlations (P < .05) to accelerated running performance than nearly all the other analyzed variables. However, the relationship directions for most front- and back-side variables during accelerated running were opposite in comparison to how the theoretical concept has been described. Horizontal ankle velocity, contact time, and step rate displayed significantly higher correlation values to maximal velocity sprinting than the other variables (P < .05), and neither of the included front- and back-side variables were significantly associated with maximal velocity sprinting. Overall, the present findings did not support that front-side mechanics were crucial for sprint performance among the investigated sprinters.

Haugen and Alnes are with the Dept of Training & Testing, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway. Danielsen, McGhie, Sandbakk, and Ettema are with the Dept of Neuroscience, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway.

Haugen (thomas.haugen@olympiatoppen.no) is corresponding author.
  • 1.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43:16801688. PubMed doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112:39213930. PubMed doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583594. PubMed doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bradshaw EJ, Maulder PS, Keogh JW. Biological movement variability during the sprint start: performance enhancement or hindrance? Sports Biomech. 2007;6:246260. PubMed doi:10.1080/14763140701489660

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bezodis NE, Salo AI, Trewartha G. Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case studies. J Sports Sci. 2014;32:738746. PubMed doi:10.1080/02640414.2013.849000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bezodis NE, Salo AI, Trewartha G. Relationships between lower-limb kinematics and block phase performance in a cross section of sprinters. Eur J Sport Sci. 2015;15:118124. PubMed doi:10.1080/17461391.2014.928915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate during sprint running. Med Sci Sports Exerc. 2004;36:261271. PubMed doi:10.1249/01.MSS.0000113664.15777.53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hunter JP, Marshall RN, McNair P. Reliability of biomechanical variables of sprint running. Med Sci Sports Exerc. 2004;36:850861. PubMed doi:10.1249/01.MSS.0000126467.58091.38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21:3143. PubMed doi:10.1123/jab.21.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kugler F, Janshen L. Body position determines propulsive forces in accelerated running. J Biomech. 2010;43:343348. PubMed doi:10.1016/j.jbiomech.2009.07.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kunz H, Kaufmann DA. Biomechanical analysis of sprinting: decathletes versus champions. Br J Sports Med. 1981;15:177181. PubMed doi:10.1136/bjsm.15.3.177

  • 12.

    Mann R, Herman J. Kinematic analysis of Olympic sprint performance: men’s 200 meters. Int J Sport Biomech. 1985;1:151162. doi:10.1123/ijsb.1.2.151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bushnell T, Hunter I. Differences in technique between sprinters and distance runners at equal and maximal speeds. Sports Biomech. 2007;6:261268. PubMed doi:10.1080/14763140701489728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3:689699. PubMed doi:10.1242/bio.20148284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35:755761. PubMed doi:10.1055/s-0033-1363252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ettema G, McGhie D, Danielsen J, Sandbakk Ø, Haugen T. On the existence of step-to-step breakpoint transitions in accelerated sprinting. PLoS ONE. 2016;11:0159701. doi:10.1371/journal.pone.0159701

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Mann R, Sprague P. Kinetics of sprinting. Track Field Quart Rev. 1983;83:49.

  • 18.

    Debaere S, Delecluse C, Aerenhouts D, Hagman F, Jonkers I. From block clearance to sprint running: characteristics underlying an effective transition. J Sports Sci. 2013;31:137149. PubMed doi:10.1080/02640414.2012.722225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Bezodis NE, Trewartha G, Salo AI. Understanding the effect of touchdown distance and ankle joint kinematics on sprint acceleration performance through computer simulation. Sports Biomech. 2015;14:232245. PubMed doi:10.1080/14763141.2015.1052748

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Mann R, Murphy A. The Mechanics of Sprinting and Hurdling. CreateSpace Independent Publishing Platform; 2015.

  • 21.

    International Association of Athletics Federations (IAAF). Competition rules 2018–2019. https://www.iaaf.org/about-iaaf/documents/technical#collapsemanuals-guidelines. Accessed November 1, 2017.

    • Export Citation
  • 22.

    de Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29:12231230. PubMed doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chen P, Popovich P. Correlation: Parametric and Nonparametric Measures. Thousand Oaks, CA: Sage; 2002:7139. Sage University Paper Series on Quantitative Applications in the Social Sciences.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Otsuka M, Kawahara T, Isaka T. Acute response of well-trained sprinters to a 100-m race: higher sprinting velocity achieved with increased step rate compared with speed training. J Strength Cond Res. 2016;30:635642. PubMed doi:10.1519/JSC.0000000000001162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Haugen T, Tønnessen E, Seiler S. 9.58 and 10.49: nearing the citius end for 100 m? Int J Sports Physiol Perform. 2015;10:269272. PubMed doi:10.1123/ijspp.2014-0350

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Salo AI, Bezodis IN, Batterham AM, Kerwin DG. Elite sprinting: are athletes individually step-frequency or step-length reliant? Med Sci Sports Exerc. 2011;43:10551062. PubMed doi:10.1249/MSS.0b013e318201f6f8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Čoh M, Milanović D, Kampmiller T. Morphological and kinematic characteristics of elite sprinters. Coll Antropol. 2001;25:605610. PubMed

    • Search Google Scholar
    • Export Citation
  • 29.

    Babić V, Čoh M, Dizdar D. Differences in kinematics parameters of athletes of different running quality. Biol Sport. 2011;28:115121. doi:10.5604/946493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Beneke R, Taylor MJ. What gives Bolt the edge-A.V. Hill knew it already! J Biomech. 2010;43:22412243. PubMed doi:10.1016/j.jbiomech.2010.04.011

All Time Past Year Past 30 Days
Abstract Views 353 353 54
Full Text Views 17 17 0
PDF Downloads 18 18 0