Neuromuscular Responses to Conditioned Soccer Sessions Assessed via GPS-Embedded Accelerometers: Insights Into Tactical Periodization

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To examine the reliability of field-based running-specific measures of neuromuscular function assessed using global positioning system (GPS)–embedded accelerometers and their responses to 3 typical conditioned sessions (ie, strength, endurance, and speed) in elite soccer players. Methods: Before and immediately after each session, vertical jump (countermovement jump [CMJ]) and adductor squeeze strength (groin) performances were recorded. Players also performed a 4-min run at 12 km/h followed by four ∼60-m runs (run = 12 s, r = 33 s). GPS (5 Hz) and accelerometer (100 Hz) data collected during the 4 runs and the recovery periods, excluding the last recovery period, were used to derive vertical stiffness (K), peak loading force (peak force over all the foot strikes [Fpeak]), and propulsion efficiency (ie, the ratio between velocity and force loads [Vl/Fl]). Results: Typical errors were small (CMJ, groin, K, and Vl/Fl) and moderate (Fpeak), with moderate (Fpeak), high (K and Vl/Fl), and very high ICCs (CMJ and groin). After all sessions, there were small decreases in groin and increases in K, but changes in F were all unclear. By contrast, the CMJ and Vl/Fl ratio responses were session dependent. There was a small increase in CMJ after speed and endurance, but unclear changes after strength; the Vl/Fl ratio increased substantially after strength, but there were a small and a moderate decrease after endurance and speed, respectively. Conclusions: Running-specific measures of neuromuscular function assessed in the field via GPS-embedded accelerometers show acceptable levels of reliability. Although the 3 sessions examined may be associated with limited neuromuscular fatigue, changes in neuromuscular performance and propulsion efficiency are likely session-objective dependent.

The authors are with the Performance Dept, Paris Saint-Germain Football Club, Saint-Germain-en-Laye, France.

Buchheit (mbuchheit@psg.fr) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Delgado-Bordonau JLMendez-Villanueva A. The tactical periodization model. In: Van Winckel JTenney DHelsen WMcMillan KMeert J-PBradley P eds. Fitness in Soccer: The Science and Practical Application. Moveo Ergo Sum; 2014.

    • Search Google Scholar
    • Export Citation
  • 2.

    Fyfe JJBishop DJStepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743762. PubMed doi:10.1007/s40279-014-0162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Buchheit MLaursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lehnert MDe Ste Croix MZaatar AHughes JVarekova RLastovicka O. Muscular and neuromuscular control following soccer-specific exercise in male youth: changes in injury risk mechanisms. Scand J Med Sci Sports. 2017;27(9):975982. PubMed doi:10.1111/sms.12705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Iacono ADMartone DCular DMilic MPadulo J. Game-profile-based training in soccer: a new field approach. J Strength Cond Res. 2017;31(12):33333342. PubMed doi:10.1519/JSC.0000000000001768

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Oliver JLDe Ste Croix MBLloyd RSWilliams CA. Altered neuromuscular control of leg stiffness following soccer-specific exercise. Eur J Appl Physiol. 2014;114(11):22412249. PubMed doi:10.1007/s00421-014-2949-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marrier BLe Meur YRobineau J. Quantifying neuromuscular fatigue induced by an intense training session in rugby sevens. Int J Sports Physiol Perform. 2016;12(2):119.

    • Search Google Scholar
    • Export Citation
  • 8.

    Enoka RMStuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):16311648. PubMed doi:10.1152/jappl.1992.72.5.1631

  • 9.

    Buchheit MGray AMorin JB. Assessing stride variables and vertical stiffness with GPS-embedded accelerometers: preliminary insights for the monitoring of neuromuscular fatigue on the field. J Sports Sci Med. 2015;14(4):698701. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Morin JBJeannin TChevallier BBelli A. Spring-mass model characteristics during sprint running: correlation with performance and fatigue-induced changes. Int J Sports Med. 2006;27(2):158165. PubMed doi:10.1055/s-2005-837569

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Girard ORacinais SKelly LMillet GPBrocherie F. Repeated sprinting on natural grass impairs vertical stiffness but does not alter plantar loading in soccer players. Eur J Appl Physiol. 2011;111(10):25472555. PubMed doi:10.1007/s00421-011-1884-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Buchheit MCholley YLambert P. Psychometric and physiological responses to a preseason competitive camp in the heat with a 6-hour time difference in elite soccer players. Int J Sports Physiol Perform. 2016;11(2):176181. PubMed doi:10.1123/ijspp.2015-0135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Winter EMMaughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27(10):985. PubMed doi:10.1080/02640410903178344

  • 14.

    Gathercole RSporer BStellingwerff TSleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):8492. PubMed doi:10.1123/ijspp.2013-0413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Impellizzeri FMRampinini ECoutts AJSassi AMarcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Barrett SMidgley AWTowlson CGarrett APortas MLovell R. Within-match playerload patterns during a simulated soccer match: potential implications for unit positioning and fatigue management. Int J Sports Physiol Perform. 2016;11(1):135140. PubMed doi:10.1123/ijspp.2014-0582

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed doi:10.2165/00007256-200030010-00001

  • 18.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):231240. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. Analysis of reliability with a spreadsheet. Sportscience. 2012. http://www.sportsci.org/resource/stats/xrely.xls. Accessed January 12 2017.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Buchheit MMendez-Villanueva A. Reliability and stability of anthropometric and performance measures in highly-trained young soccer players: effect of age and maturation. J Sports Sci. 2013;31(12):13321343. PubMed doi:10.1080/02640414.2013.781662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Thorborg KPetersen JMagnusson SPHölmich P. Clinical assessment of hip strength using a hand-held dynamometer is reliable. Scand J Med Sci Sports. 2010;20(3):493501. PubMed doi:10.1111/j.1600-0838.2009.00958.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Haugen TBuchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641656. doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit MLaursen PB. High-intensity interval training, solutions to the programming puzzle: part I: cardiopulmonary emphasis. Sports Med. 2013;43(5):313338. PubMed doi:10.1007/s40279-013-0029-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buchheit MAllen APoon TKModonutti MGregson WDi Salvo V. Integrating different tracking systems in football: multiple camera semi-automatic system, local position measurement and GPS technologies. J Sports Sci. 2014;32(20):18441857. PubMed doi:10.1080/02640414.2014.942687

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit MSimpson BM. Player tracking technology: half-full or half-empty glass? Int J Sports Physiol Perform. 2016;12(suppl 2):123.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cone JRBerry NTGoldfarb AHet al. Effects of an individualized soccer match simulation on vertical stiffness and impedance. J Strength Cond Res. 2012;26(8):20272036. PubMed doi:10.1519/JSC.0b013e31823a4076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mayer NBosquet LPlaine Fet al. Reproducibility of Physiological Neuromuscular and Perceptual Responses to Small-Sided Games in Highly-Trained Young Soccer Players. Barcelona, Spain: European College of Sport Science; 2013.

    • Search Google Scholar
    • Export Citation
  • 29.

    De Ste Croix MHughes JLloyd RSOliver JLRead P. Leg stiffness in female soccer players: inter-session reliability and the fatiguing effects of soccer-specific exercise. J Strength Cond Res. 2016;31(11):30523058. doi:10.1519/JSC.0000000000001715

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Seitz LBHaff GG. Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 2016;46(2):231240. PubMed doi:10.1007/s40279-015-0415-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Morin JBEdouard PSamozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):16801688. PubMed doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Morin JBGimenez PEdouard Pet al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Girard OMendez-Villanueva ABishop D. Repeated-sprint ability—part I: factors contributing to fatigue. Sports Med. 2011;41(8):673694. PubMed doi:10.2165/11590550-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 225 225 44
Full Text Views 36 36 19
PDF Downloads 12 12 8
Altmetric Badge
PubMed
Google Scholar
Cited By