Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the effect of a complex, short-term strength/power training protocol on performance and body composition of elite early adolescent soccer players. Methods: Twenty-two players (14–15 y) were randomly assigned to (1) an experimental group (N = 12; participated in a 5-wk training protocol with traditional multijoint power resistance exercises, Olympic-style lifts, plyometric drills, and speed work; 4 times per week) or (2) a control group (N = 10). Strength and power performance (jumping, speed, change of direction, repeated sprint ability, endurance, isokinetic strength of knee flexors and extensors, maximal strength in various lifts, and speed-endurance) were evaluated pretraining and posttraining. Results: Cessation of training for 5 weeks in the control group induced a marked performance deterioration (∼5%–20%). Training not only prevented strength performance deterioration but also increased it (∼2%–30%). Endurance and repeated sprint ability declined to a smaller extent in experimental group compared with control group (15% vs 7.5%). Isometric strength and body composition remained unaltered in both groups. Conclusions: Results demonstrate that (1) young players exhibit a high level of trainability of their strength/power performance (but not endurance) in response to a short-term complex training protocol during early adolescence, (2) Olympic-style lifts are characterized by increased safety in this age group and appear to be highly effective, (3) lifts incorporating a hip thrust result in increased strength of both knee extensors and flexors, (4) cessation of training for only 5 weeks results in marked deterioration of strength/power and endurance performance, and (5) improvement of strength/power performance may be related to neural-based adaptation as body composition remained unaffected.

Chatzinikolaou, Michaloglou, Avloniti, Leontsini, Arsenis, and Athanailidis are with the School of Physical Education & Sport Sciences, Democritus University of Thrace, Komotini, Greece. Deli, Draganidis, Jamurtas, and Fatouros are with the School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala, Greece. Vlachopoulos and Williams are with the Children’s Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom. Gracia-Marco is with the PROFITH “PROmoting FITness and Health through physical activity” Research Group, Dept of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain, and the Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza, Spain.

Fatouros (ifatouros@pe.uth) is corresponding author.
  • 1.

    Mohr M, Draganidis D, Chatzinikolaou A, et al. Muscle damage, inflammatory, immune and performance responses to three soccer games in 1 week in competitive male players. Eur J Appl Physiol. 2016;116:179–193. PubMed doi:10.1007/s00421-015-3245-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Castagna C, D’Ottavio S, Abt G. Activity profile of young soccer players during actual match play. J Strength Cond Res. 2003;17:775–780. PubMed

  • 3.

    Dalen T, Ingebrigtsen J, Ettema G, Hjelde GH, Wisløff U. Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. J Strength Cond Res. 2016;30(2):351–359. PubMed doi:10.1519/JSC.0000000000001063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bangsbo J, Norregaard L, Thorso F. Activity profile of competition soccer. Can J Sport Sci. 1991;16:110–116. PubMed

  • 5.

    Martin RJ, Doré E, Hautier CA, Van Praagh E, Bedu M. Short-term peak power changes in adolescents of similar anthropometric characteristics. Med Sci Sports Exerc. 2003;35:1436–1440. PubMed doi:10.1249/01.MSS.0000079074.47756.AB

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Rumpf MC, Cronin JB, Oliver JL, Hughes MG. Vertical and leg stiffness and stretch-shortening cycle changes across maturation during maximal sprint running. Hum Mov Sci. 2013;32(4):668–676. PubMed doi:10.1016/j.humov.2013.01.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Chelly MS, Chérif N, Amar MB, et al. Relationships of peak leg power, 1 maximal repetition half back squat, and leg muscle volume to 5-m sprint performance of junior soccer players. J Strength Cond Res. 2010;24:266–271. PubMed doi:10.1519/JSC.0b013e3181c3b298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Behringer M, Vom Heede A, Yue Z, Mester J. Effects of resistance training in children and adolescents: a meta-analysis. Pediatrics. 2010;126:1199–1210. PubMed doi:10.1542/peds.2010-0445

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bosco C, Komi PV, Ito A. Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand. 1981;111:135–140. PubMed doi:10.1111/j.1748-1716.1981.tb06716.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thompson G, Kraemer WJ, Spiering BA, Volek JS, Anderson JM, Maresh CM. Maximal power at different percentages of one repetition maximum: influence of resistance and gender. J Strength Cond Res. 2007;21:131–137. doi:10.1519/00124278-200702000-00024

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Newton R, Kraemer W. Developing explosive muscular power: implications for a mixed methods training strategy. Strength Cond J. 1994;16:20–31. doi:10.1519/1073-6840(1994)016<0020:DEMPIF>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Channell BT, Barfield JP. Effects of Olympic and traditional resistance training on vertical jump improvement in high school boys. J Strength Cond Res. 2008;22(5):1522–1527. PubMed doi:10.1519/JSC.0b013e318181a3d0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    MacKenzie SJ, Lavers RJ, Wallace BB, Biomechanical A. Comparison of the vertical jump, power clean, and jump squat. J Sports Sci. 2014;32:1576–1585. PubMed doi:10.1080/02640414.2014.908320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Duehring MD, Feldmann CR, Ebben WP. Strength and conditioning practices of United States high school strength and conditioning coaches. J Strength Cond Res. 2009;23(8):2188–2203. PubMed doi:10.1519/JSC.0b013e3181bac62d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Michailidis Y, Fatouros IG, Primpa E, et al. Plyometrics’ trainability in preadolescent soccer athletes. J Strength Cond Res. 2013;27:38–49. PubMed doi:10.1519/JSC.0b013e3182541ec6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fatouros IG, Jamurtas AZ, Leontsini D, et al. Evaluation of plyometric exercise training, weight training and their combination on vertical jumping performance and leg strength. J Strength Cond Res. 2000;14(4):470–476.

    • Search Google Scholar
    • Export Citation
  • 17.

    Baker D. Acute effect of alternating heavy and light resistances on power output during upper-body complex power training. J Strength Cond Res. 2003;17:493–497. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vlachopoulos D, Ubago-Guisado E, Barker AR, et al. Determinants of bone outcomes in adolescent athletes at baseline: the PRO-BONE study. Med Sci Sports Exerc. 2017;49(7):1389–1396. PubMed doi:10.1249/MSS.0000000000001233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tanner JM. Growth at Adolescence; With a General Consideration of the Effects of Hereditary and Environmental Factors Upon Growth and Maturation From Birth to Maturity. Oxford, UK: Blackwell Scientific Publications; 1962.

    • Search Google Scholar
    • Export Citation
  • 20.

    Draganidis D, Chatzinikolaou A, Avloniti A, et al. Recovery kinetics of knee flexor and extensor strength after a soccer match. PLoS ONE. 2015;10:e0128072. PubMed doi:10.1371/journal.pone.0128072

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sander A, Keiner M, Wirth K, Schmidtbleicher D. Influence of a 2-year strength training programme on power performance in elite youth soccer players. Eur J Sport Sci. 2013;13:445–451. PubMed doi:10.1080/17461391.2012.742572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lockie RG, Moreno MR, Lazar A, et al. The physical and athletic performance characteristics of Division I collegiate female soccer players by position. J Strength Cond Res. 2018:32(2):334–343.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bosquet L, Berryman N, Dupuy O, et al. Effect of training cessation on muscular performance: a meta-analysis. Scand J Med Sci Sports. 2013;23:e140–e149. PubMed doi:10.1111/sms.12047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Faigenbaum AD, Kraemer WJ, Blimkie CJ, et al. Youth resistance training: updated position statement paper from the National Strength and Conditioning Association. J Strength Cond Res. 2009;23:S60–S79. PubMed doi:10.1519/JSC.0b013e31819df407

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Andersen LL, Andersen JL, Magnusson SP, et al. Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol. 2005;99:87–94. PubMed doi:10.1152/japplphysiol.00091.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Faigenbaum AD, Milliken L, Moulton L, Westcott WL. Early muscular fitness adaptations in children in response to two different resistance training regimens. Ped Exerc Sci. 2005;17:237–248. doi:10.1123/pes.17.3.237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Behringer M, Vom Heede A, Matthews M, Mester J. Effects of strength training on motor performance skills in children and adolescents: a meta-analysis. Ped Exerc Sci. 2011;23:186–206. doi:10.1123/pes.23.2.186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Randell AD, Cronin JB, Keogh JWL, Gill ND. Transference of strength and power adaptation to sports performance—horizontal and vertical force production. Strength Cond J. 2010;32:100–106. doi:10.1519/SSC.0b013e3181e91eec

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Meylan CM, Cronin JB, Oliver JL, Hopkins WG, Contreras B. The effect of maturation on adaptations to strength training and detraining in 11–15-year-olds. Scand J Med Sci Sports. 2014;24:e156–e164. PubMed doi:10.1111/sms.12128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Meyers RW, Oliver JL, Hughes MG, Lloyd RS, Cronin JB. The influence of maturation on sprint performance in boys over a 21-month period. Med Sci Sports Exerc. 2016;48(12):2555–2562. PubMed doi:10.1249/MSS.0000000000001049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Madsen K, Pedersen PK, Djurhuus MS, Klitgaard NA. Effects of detraining on endurance capacity and metabolic changes during prolonged exhaustive exercise. J Appl Physiol. 1993;75:1444–1451. PubMed doi:10.1152/jappl.1993.75.4.1444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Eliakim A, Nemet D. The endocrine response to exercise and training in young athletes. Pediatr Exerc Sci. 2013;25(4):605–615. PubMed doi:10.1123/pes.25.4.605

All Time Past Year Past 30 Days
Abstract Views 338 338 36
Full Text Views 33 33 2
PDF Downloads 8 8 1