Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Maximal aerobic and anaerobic power are crucial performance determinants in most sport disciplines. Numerous studies have published power data from elite athletes over the years, particularly in runners, cyclists, rowers, and cross-country (XC) skiers. This invited review defines the current “world records” in human upper limits of aerobic and anaerobic power. Currently, V˙O2max values of ∼7.5 and 7.0 L·min−1 in male XC skiers and rowers, respectively, and/or ∼90 mL·kg−1·min−1 in XC skiers, cyclists, and runners can be described as upper human limits for aerobic power. Corresponding values for women are slightly below 5.0 L·min−1 in rowers and XC skiers and ∼80 mL·kg−1·min−1 in XC skiers and runners. Extremely powerful male athletes may reach ∼85 W·kg−1 in countermovement jump (peak vertical power) and ∼36 W·kg−1 in sprint running (peak horizontal power), cycling (instantaneous power during force–velocity testing from a standing position), and rowing (instantaneous power). Similarly, their female counterparts may reach ∼70 W·kg−1 in countermovement jump and ∼30 W·kg−1 in sprint running, cycling, and rowing. The presented values can serve as reference values for practitioners and scientists working with elite athletes. However, several methodological considerations should be taken into account when interpreting the results. For example, calibrated apparatus and strict procedures are required to ensure high measurement validity and reliability, and the sampling rate for anaerobic power assessments must be strictly predetermined and carefully measured. Doping is also a potential confounding factor when interpreting the human upper limits of aerobic and anaerobic power.

Haugen and Paulsen are with Norwegian Olympic Federation, Oslo, Norway. Seiler is with the Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway. Sandbakk is with the Dept of Neuromedicine and Movement Science, Center for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway.

Haugen (thomas.haugen@olympiatoppen.no) is corresponding author.
  • 1.

    Berthelot G, Thibault V, Tafflet M, et al. The citius end: world records progression announces the completion of a brief ultra-physiological quest. PLoS ONE. 2008;3:1552. PubMed ID: 18253499 doi:10.1371/journal.pone.0001552

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.

  • 3.

    Robinson S, Edwards HT, Dill DB. New records in human power. Science. 1937;85:409–410. doi:10.1126/science.85.2208.409

  • 4.

    Seiler S. A brief history of endurance testing in athletes. Sportscience. 2011;15:40–86.

  • 5.

    Poole DC, Jones AM. Measurement of the maximum oxygen uptake V˙O2max:V˙O2peak is no longer acceptable. J Appl Physiol. 2017;122:997–1002. PubMed ID: 28153947 doi:10.1152/japplphysiol.01063.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Joyner MJ, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Tønnessen E, Haugen TA, Hem E, Leirstein S, Seiler S. Maximal aerobic capacity in the winter-Olympics endurance disciplines: Olympic-medal benchmarks for the time period 1990–2013. Int J Sports Physiol Perform. 2015;10:835–839. doi:10.1123/ijspp.2014-0431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sandbakk Ø, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12(8):1003–1011. PubMed ID: 28095083 doi:10.1123/ijspp.2016-0749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Volianitis S, Secher NH. Rowing, the ultimate challenge to the human body—implications for physiological variables. Clin Physiol Funct Imaging. 2009;29:241–244. PubMed ID: 19366367 doi:10.1111/j.1475-097X.2009.00867.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Saltin B, Åstrand PO. Maximal oxygen uptake in athletes. J Appl Physiol. 1967;23:353–358. PubMed ID: 6047957 doi:10.1152/jappl.1967.23.3.353

  • 11.

    Hagerman FC, Hagerman GR, Mickelson TC. Physiological profiles of elite rowers. Phys Sportsmed. 1979;7:74–83. PubMed ID: 29256655 doi:10.1080/00913847.1979.11948457

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bergh U. The influence of body mass in cross-country skiing. Med Sci Sports Exerc. 1987;19:324–331. PubMed ID: 3657480. doi:10.1249/00005768-198708000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Saltin B. The physiology of competitive cross-country skiing across a four decade perspective; with a note on training induced adaptations and role of training at medium altitude. In: Mueller E, Schwameder H, Kornxl E, Raschner CE, eds. Science and Skiing. London, UK: E & FN Spon; 1996:435–469.

    • Search Google Scholar
    • Export Citation
  • 14.

    Mikulic P, Bralic N. Elite status maintained: a 12-year physiological and performance follow-up of two Olympic champion rowers. J Sports Sci. 2017;23:1–6.

    • Search Google Scholar
    • Export Citation
  • 15.

    Levine BD. VO2max: what do we know, and what do we still need to know? J Physiol. 2008;586:25–34. PubMed ID: 18006574 doi:10.1113/jphysiol.2007.147629

  • 16.

    Sutton JR, Reeves JT, Wagner PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol. 1988;64:1309–1321. PubMed ID: 3132445 doi:10.1152/jappl.1988.64.4.1309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Faria EW, Parker DL, Faria IE. The science of cycling: physiology and training—part 1. Sports Med. 2005;35:285–312. PubMed ID: 15831059 doi:10.2165/00007256-200535040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Santalla A, Earnest CP, Marroyo JA, Lucia A. The Tour de France: an updated physiological review. Int J Sports Physiol Perform. 2012;7:200–209. PubMed ID: 22930683 doi:10.1123/ijspp.7.3.200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Bell PG, Furber MJ, Van Someren KA, Antón-Solanas A, Swart J. The physiological profile of a multiple Tour de France winning cyclist. Med Sci Sports Exerc. 2017;49:115–123. PubMed ID: 27508883 doi:10.1249/MSS.0000000000001068

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Coyle EF. Improved muscular efficiency displayed as Tour de France champion matures. J Appl Physiol. 2005;98:2191–2196. PubMed ID: 15774697 doi:10.1152/japplphysiol.00216.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Craig NP, Norton KI. Characteristics of track cycling. Sports Med. 2001;31:457–468. PubMed ID: 11428683 doi:10.2165/00007256-200131070-00001

  • 22.

    Saltin B, Larsen H, Terrados N, et al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5:209–221. PubMed ID: 7552766 doi:10.1111/j.1600-0838.1995.tb00037.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Larsen HB, Sheel AW. The Kenyan runners. Scand J Med Sci Sports. 2015;25:110–118. PubMed ID: 26589124 doi:10.1111/sms.12573

  • 24.

    Sandbakk Ø, Hegge AM, Losnegard T, Skattebo Ø, Tønnessen E, Holmberg HC. The physiological capacity of the world’s highest ranked female cross-country skiers. Med Sci Sports Exerc. 2016;48:1091–1100. PubMed ID: 26741124 doi:10.1249/MSS.0000000000000862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Impellizzeri FM, Ebert T, Sassi A, Menaspà P, Rampinini E, Martin DT. Level ground and uphill cycling ability in elite female mountain bikers and road cyclists. Eur J Appl Physiol. 2008;102:335–341. PubMed ID: 17943306 doi:10.1007/s00421-007-0590-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Wilber RL, Zawadzki KM, Kearney JT, Shannon MP, DisalVO D. Physiological profiles of elite off-road and road cyclists. Med Sci Sports Exerc. 1997;29:1090–1094. PubMed ID: 9268967 doi:10.1097/00005768-199708000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Billat V, Lepretre PM, Heugas AM, Laurence MH, Salim D, Koralsztein JP. Training and bioenergetic characteristics in elite male and female Kenyan runners. Med Sci Sports Exerc. 2003;35:297–304. PubMed ID: 12569219 doi:10.1249/01.MSS.0000053556.59992.A9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lacour JR, Padilla-Magunacelaya S, Barthélémy JC, Dormois D. The energetics of middle-distance running. Eur J Appl Physiol Occup Physiol. 1990;60:38–43. PubMed ID: 2311592 doi:10.1007/BF00572183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hegge AM, Myhre K, Welde B, Holmberg HC, Sandbakk O. Are gender differences in upper-body power generated by elite cross-country skiers augmented by increasing the intensity of exercise? PLoS ONE. 2015;10:e0127509. PubMed ID: 26000713 doi:10.1371/journal.pone.0127509

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Michael JS, Smith R, Rooney KB. Determinants of kayak paddling performance. Sports Biomech. 2009;8:167–179. PubMed ID: 19705767 doi:10.1080/14763140902745019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Coutts KD. Peak oxygen uptake of elite wheelchair athletes. Adapt Phys Activ Quart. 1990;7:62–66. doi:10.1123/apaq.7.1.62

  • 32.

    Sandbakk Ø, Solli GS, Holmberg HC. Sex differences in world record performance: the influence of sport discipline and competition duration. Int J Sports Physiol Perform. 2018;13(1):2–8. PubMed ID: 28488921 doi:10.1123/ijspp.2017-0196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Barclay CJ, Woledge RC, Curtin NA. Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil. 2007;28:259–274. PubMed ID: 17882515 doi:10.1007/s10974-007-9116-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011;41:17–38. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Margaria R, Aghemo P, Rovelli E. Measurement of muscular power (anaerobic) in man. J Appl Physiol. 1966;21:1662–1664. PubMed ID: 5923240 doi:10.1152/jappl.1966.21.5.1662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wilkie DR. The relation between force and velocity in human muscle. J Physiol. 1950;110:249–280. doi:10.1113/jphysiol.1949.sp004437

  • 37.

    Wilkie DR. Man as a source of mechanical power. Ergonomics. 1960;3:1–8. doi:10.1080/00140136008930462

  • 38.

    Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res Int. 2013;2013:1–40. PubMed ID: 24073413 doi:10.1155/2013/589361

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Perez-Gomez J, Rodriguez GV, Ara I, et al. Role of muscle mass on sprint performance: gender differences? Eur J Appl Physiol. 2008;102:685–694. PubMed ID: 18084774 doi:10.1007/s00421-007-0648-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Martin JC, Wagner BM, Coyle EF. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc. 1997;29:1505–1512. PubMed ID: 9372489 doi:10.1097/00005768-199711000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force–velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump. Eur J Appl Physiol Occup Physiol. 1987;56:650–656. PubMed ID: 3678217 doi:10.1007/BF00424805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Bar-Or O. The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med. 1987;4:381–394. PubMed ID: 3324256 doi:10.2165/00007256-198704060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Jaafar H, Rouis M, Attiogbe E, Vandewalle H, Driss T. A comparative study between the Wingate and force–velocity anaerobic cycling tests: effect of physical fitness. Int J Sports Physiol Perform. 2016;11:48–54. PubMed ID: 25849068 doi:10.1123/ijspp.2015-0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Zupan MF, Arata AW, Dawson LH, Wile AL, Payn TL, Hannon ME. Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res. 2009;23:2598–2604. PubMed ID: 19910814 doi:10.1519/JSC.0b013e3181b1b21b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Vandewalle H, Peres G, Monod H. Standard anaerobic exercise tests. Sports Med. 1987;4:268–289. PubMed ID: 3306867 doi:10.2165/00007256-198704040-00004

  • 46.

    Hofman N, Orie J, Hoozemans MJ, Foster C, de Koning JJ. Wingate test is a strong predictor of 1500 m performance in elite speed skaters. Int J Sports Physiol Perform. 2017;12:1288–1292. PubMed ID: 28253027 doi:10.1123/ijspp.2016-0427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Martin JC, Gardner AS, Barras M, Martin DT. Modeling sprint cycling using field-derived parameters and forward integration. Med Sci Sports Exerc. 2006;38:592–597. PubMed ID: 16540850 doi:10.1249/01.mss.0000193560.34022.04

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Dorel S, Hautier CA, Rambaud O, et al. Torque and power–velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26:739–746. PubMed ID: 16237619 doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Gardner AS, Martin DT, Barras M, Jenkins DG, Hahn AG. Power output demands of elite track sprint cycling. Int J Perform Anal Sport. 2005;5:149–154. doi:10.1080/24748668.2005.11868345

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Gardner AS, Martin JC, Martin DT, Barras M, Jenkins DG. Maximal torque- and power-pedaling rate relationships for elite sprint cyclists in laboratory and field tests. Eur J Appl Physiol. 2007;101:287–292. PubMed ID: 17562069 doi:10.1007/s00421-007-0498-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Martin JC, Davidson CJ, Pardyjak ER. Understanding sprint-cycling performance: the integration of muscle power, resistance, and modeling. Int J Sports Physiol Perform. 2007;2:5–21. PubMed ID: 19255451 doi:10.1123/ijspp.2.1.5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Simenz CJ, Garceau LR, Lutsch BN, Suchomel TJ, Ebben WP. Electromyographical analysis of lower extremity muscle activation during variations of the loaded step-up exercise. J Strength Cond Res. 2012;26:3398–3405. PubMed ID: 22237139 doi:10.1519/JSC.0b013e3182472fad

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43:1680–1688. PubMed ID: 21364480 doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112:3921–3930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26:648–658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Slawinski J, Termoz N, Rabita G, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27:45–54. PubMed ID: 26644061 doi:10.1111/sms.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Rabita G, Dorel S, Slawinski J, et al. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:583–594. PubMed ID: 25640466 doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46:641–656. PubMed ID: 26660758 doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    McBride JM, Triplett-McBride T, Davie A, Newton RU. A comparison of strength and power characteristics between power lifters, Olympic lifters, and sprinters. J Strength Cond Res. 1999;13:58–66.

    • Search Google Scholar
    • Export Citation
  • 60.

    Davies CT, Rennie R. Human power output. Nature. 1968;217:770–771. doi:10.1038/217770a0

  • 61.

    Carlock JM, Smith SL, Hartman MJ, et al. The relationship between vertical jump power estimates and weightlifting ability: a field-test approach. J Strength Cond Res. 2004;18:534–539. PubMed ID: 15320676

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Komi PV, Bosco C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med Sci Sports. 1978;10:261–265. PubMed ID: 750844

  • 63.

    McGilvery RW. The use of fuels for muscular work. In: Howald H, Poortmans JR, eds. Metabolic Adaptation to Prolonged Physical Exercise. Basel, Switzerland: Birkhauser Verlag; 1975:12–30.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Harman EA, Rosenstein MT, Frykman PN, Rosenstein RM. The effects of arms and countermovement on vertical jumping. Med Sci Sports Exerc. 1990;22:825–833. PubMed ID: 2287261 doi:10.1249/00005768-199012000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Lees A, Vanrenterghem J, De CD. Understanding how an arm swing enhances performance in the vertical jump. J Biomech. 2004;37:1929–1940. PubMed ID: 15519601 doi:10.1016/j.jbiomech.2004.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Vaverka F, Jandacka D, Zahradnik D, et al. Effect of an arm swing on countermovement vertical jump performance in elite volleyball players. J Hum Kinet. 2016;53:41–50. PubMed ID: 28149409 doi:10.1515/hukin-2016-0009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Dapena J. The high jump. In: Zatsiorsky VM, ed. Biomechanics in Sport: Performance Enhancement and Injury Prevention. Oxford, UK: Blackwell Science; 2000:284–311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Bobbert MF, Casius LJ. Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc. 2005;37:440–446. PubMed ID: 15741843 doi:10.1249/01.MSS.0000155389.34538.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Bobbert MF, Gerritsen KG, Litjens MC, Van Soest AJ. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28:1402–1412. PubMed ID: 8933491 doi:10.1097/00005768-199611000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Izquierdo-Gabarren M, Expósito RG, de Villarreal ES, Izquierdo M. Physiological factors to predict on traditional rowing performance. Eur J Appl Physiol. 2010;108:83–92. PubMed ID: 19756709 doi:10.1007/s00421-009-1186-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Metikos B, Mikulic P, Sarabon N, Markovic G. Peak power output test on a rowing ergometer: a methodological study. J Strength Cond Res. 2015;29:2919–2925. PubMed ID: 25785705 doi:10.1519/JSC.0000000000000944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Stöggl TL, Holmberg HC. Double-poling biomechanics of elite cross-country skiers: flat versus uphill terrain. Med Sci Sports Exerc. 2016;48:1580–1589. doi:10.1249/MSS.0000000000000943

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Swarén M, Eriksson A. Power and pacing calculations based on real-time locating data from a cross country skiing sprint race. In: Swarén M, ed. Objective Analysis Methods in the Mechanics of Sports (Thesis). Stockholm, Sweden: Royal Institute of Technology; 2016.

    • Search Google Scholar
    • Export Citation
  • 74.

    Seiler S, De Konig JJ, Foster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2006;39:534–540. doi:10.1249/01.mss.0000247005.17342.2b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Schmidt W, Prommer N. Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev. 2010;38:68–75. PubMed ID: 20335738 doi:10.1097/JES.0b013e3181d4957a

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 379 379 46
Full Text Views 27 27 6
PDF Downloads 17 17 5