Effects of Varying the Step Duration on the Determination of Lactate Thresholds in Elite Rowers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

This study aimed to identify the minimum increment duration required to accurately assess 2 distinct lactate thresholds. A total of 21 elite rowers (12 women and 9 men) participated in this study, and each performed 8 or 9 rowing tests comprising 5 progressive incremental tests (3-, 4-, 5-, 7-, or 10-min steps) and at least three 30-min constant-intensity maximal lactate steady-state assessments. Power output (PO) at lactate threshold 1 was higher in the 3- and 4-min incremental tests. No other measures were different for lactate threshold 1. The PO at the second lactate threshold was different between most tests and was higher than the PO at maximal lactate steady state, except for the 10-min incremental test. Lactate threshold 2 oxygen consumption was higher in the 3-, 4-, and 5-min tests, but heart rate (HR) and rating of perceived exertion were not different between tests. Peak PO in the incremental tests was inversely related to the step durations (r2 = .86, P ≤ .02). Peak oxygen consumption was higher in the shorter (≤5 min) than the longer (≥7 min) incremental tests, whereas peak HR was not different between tests. These data suggest that for the methods used in this study, incremental exercise tests with step durations ≤7 min overestimate maximal lactate steady-state exercise intensity, peak physiological values are best determined using incremental tests with step durations ≤4 min, and HR measures are not affected by step duration, and therefore, prescription of training HRs can be made using any of these tests.

Bourdon and Buckley are with the School of Health Sciences, University of South Australia, Adelaide, SA, Australia. Bourdon is also with Sport Science Dept, Aspire Academy, Doha, Qatar. Woolford is with Sport Science Unit, South Australian Sports Inst, Adelaide, SA, Australia.

Bourdon (pitre.bourdon@gmail.com) is corresponding author.
  • 1.

    Bourdon PC. Blood lactate thresholds: concepts and applications. In: Tanner RK, Gore CJ, eds. Physiological Tests for Elite Athletes. 2nd ed. Champaign, IL: Human Kinetics; 2013.

    • Search Google Scholar
    • Export Citation
  • 2.

    Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–490. PubMed ID: 19453206 doi:10.2165/00007256-200939060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chalmers S, Esterman A, Eston R, Norton K. Standardization of the Dmax method for calculating the second lactate threshold. Int J Sports Physiol Perform. 2015;10(7):921–926. PubMed ID: 25710184 doi:10.1123/ijspp.2014-0537

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Foxdal P, Sjodin A, Sjodin B. Comparison of blood lactate concentrations obtained during incremental and constant intensity exercise. Int J Sports Med. 1996;17:360–365. PubMed ID: 8858408 doi:10.1055/s-2007-972861

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Smekal G, Scharl A, von Duvillard SP, et al. Accuracy of neuro-fuzzy logic and regression calculations in determining maximal lactate steady-state power output from incremental tests in humans. Eur J Appl Physiol. 2002;88:264–274. PubMed ID: 12458370 doi:10.1007/s00421-002-0702-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol.l(–1) lactate. Int J Sports Med. 1982;3:105–110. PubMed ID: 7107102 doi:10.1055/s-2008-1026072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27:863–867.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Billat VL, Sirvent P, Py G, Koralsztein J-P, Mercier J. The concept of maximal lactate steady state. Sports Med. 2003;33(6):407–426. PubMed ID: 12744715 doi:10.2165/00007256-200333060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stockhausen W, Grathwohl D, Burklin C, Spranz P, Kuel J. Stage duration and increase of work load in incremental testing on a cycle ergometer. Eur J Appl Physiol. 1997;76:295–301. doi:10.1007/s004210050251

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hauser T, Adan J, Schulz H. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med. 2014;35(6):517–521. PubMed ID: 24227122.

    • Search Google Scholar
    • Export Citation
  • 11.

    Cheng B, Kuipers H, Snyder AC, Keizer HA, Jeukendrup A, Hesselink M. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med. 1992;13(7):518–522. PubMed ID: 1459746 doi:10.1055/s-2007-1021309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Pierce SJ, Hahn AG, Davie A, Lawton EW. Prolonged incremental tests do not necessarily compromise VO2max in well-trained athletes. J Sci Med Sport. 1999;2(4):356–363. PubMed ID: 10710013 doi:10.1016/S1440-2440(99)80008-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. Int J Sports Med. 1981;2:160–165. PubMed ID: 7333753 doi:10.1055/s-2008-1034604

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hofmann P, Jürimäe T, Jürimäe J, et al. HRTP, prolonged ergometer exercise, and single sculling. Int J Sports Med. 2007;28(11):964–969. PubMed ID: 17534783 doi:10.1055/s-2007-965074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gavin JP, Willems MET, Myers SD. Reproducibility of lactate markers during 4 and 8 min stage incremental running: a pilot study. J Sci Med Sport. 2014;17:635–639. PubMed ID: 24028777 doi:10.1016/j.jsams.2013.08.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Foxdal P, Sjodin B, Sjodin A, Ostman B. The validity and accuracy of blood lactate measurements for prediction of maximal endurance running capacity. Dependency of analyzed blood media in combination with different designs of the exercise test. Int J Sports Med. 1994;15:89–95. PubMed ID: 8157375 doi:10.1055/s-2007-1021026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kuipers H, Rietjans G, Verstappen F, Schoenmakers H, Hofman G. Effects of stage duration in incremental running tests on physiological variables. Int J Sports Med. 2003;24:486–491. PubMed ID: 12968205 doi:10.1055/s-2003-42020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bourdon PC, David AZ, Buckley JD. A single exercise test for assessing physiological and performance parameters in elite rowers: the 2-in-1 test. J Sci Med Sport. 2009;12:205–211. PubMed ID: 18083633 doi:10.1016/j.jsams.2007.09.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hahn A, Bourdon P, Tanner R. Protocols for the physiological assessment of rowers. In: Gore CJ, ed. Physiological Tests for Elite Athletes. Champaign, IL: Human Kinetics; 2000.

    • Search Google Scholar
    • Export Citation
  • 20.

    Beneke R, Petelin von Duvillard S. Determination of maximal lactate steady state response in selected sports events. Med Sci Sports Exerc. 1996;28:241–246.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Heck H, Mader A, Hess G, Mucke S, Muller R, Hollman W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–130. PubMed ID: 4030186 doi:10.1055/s-2008-1025824

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;23:92–98.

  • 23.

    ADAPT [computer program; version 1.2]. 1988. Belconnen, Australia: Sport Science Division.

    • Export Citation
  • 24.

    Palmer AS, Potteiger JA, Nau KL, Tong RJ. A 1-day maximal lactate steady-state assessment protocol for trained runners. Med Sci Sports Exerc. 1999;31(9):1336–1341. PubMed ID: 10487377 doi:10.1097/00005768-199909000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Guellich A, Seiler S, Emrich E. Training methods and intensity distribution of young world-class rowers. Int J Sports Physiol Perform. 2009;4(4):448–460. PubMed ID: 20029096 doi:10.1123/ijspp.4.4.448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(S2):1–10.

  • 27.

    Pallares JG, Moran-Navarro R, Ortega JF, Fernandez-Elias VE, Mora-Rodriguez R. Validity and reliability of ventilatory and blood lactate thresholds in well-trained cyclists. PLoS ONE. 2016;11(9):0163389. doi:10.1371/journal.pone.0163389

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Beneke R, Leithauser RM, Hutler M. Dependence on the maximal lactate steady state on the motor pattern of exercise. Br J Sports Med. 2001;35:192–196. PubMed ID: 11375880 doi:10.1136/bjsm.35.3.192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Vincent WJ. Statistics in Kinesiology. 2nd ed. Champaign, IL: Human Kinetics; 1999.

  • 30.

    Camargo Alves JC, Segabinazi Peserico C, Nogueira GA. The influence of the regression model and final speed criteria on the reliability of lactate threshold determined by the Dmax method in endurance trained runners. Appl Physiol Nutr Metab. 2016;41:1039–1044.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 144 144 22
Full Text Views 4 4 0
PDF Downloads 2 2 0