Impact-Induced Muscle Damage and Contact Sports: Etiology, Effects on Neuromuscular Function and Recovery, and the Modulating Effects of Adaptation and Recovery Strategies

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Athletes involved in contact sports are habitually exposed to skeletal-muscle damage in their training and performance environments. This often leads to exercise-induced muscle damage (EIMD) resulting from repeated eccentric and/or high-intensity exercise and to impact-induced muscle damage (IIMD) resulting from collisions with opponents and the playing surface. While EIMD has been an area of extensive investigation, IIMD has received comparatively little research, with the magnitude and time frame of alterations following IIMD not presently well understood. It is currently thought that EIMD results from an overload of mechanical stress that causes ultrastructural damage to the cellular membrane constituents. Damage leads to compromised ability to produce force, which manifests immediately and persists for up to 14 d following exercise exposure. IIMD has been implicated in attenuated neuromuscular performance and recovery and in inflammatory processes, although the underlying course over time remains unclear. Exposure to EIMD leads to an adaptation to subsequent exposures, a phenomenon known as the repeated-bout effect. An analogous adaptation has been suggested to occur following IIMD; however, to date, this contention remains equivocal. While a considerable body of research has explored the efficacy of recovery strategies following EIMD, strategies promoting recovery from IIMD are limited to investigations using animal contusion models. Strategies such as cryotherapy and antioxidant supplementation that focus on attenuating the secondary inflammatory response may provide additional benefit in IIMD and are explored herein. Further research is required to first establish a model of generating IIMD and then explore broader areas around IIMD in athletic populations.

Naughton and Slater are with the School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia. Miller is with the Dept of Physiology, Australian Inst of Sports, Canberra, ACT, Australia.

Naughton (mrn004@student.usc.edu.au) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Johnston RDGabbett TJSeibold AJJenkins DG. Influence of physical contact on neuromuscular fatigue and markers of muscle damage following small-sided games. J Sci Med Sport. 2014;17(5):535540. PubMed ID: 23981503 doi:10.1016/j.jsams.2013.07.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McLellan CPLovell DI. Neuromuscular responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2012;26(5):14311440. PubMed ID: 22516913 doi:10.1519/JSC.0b013e318231a627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Lindsay AHealy JMills Wet al. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin. Scand J Med Sci Sports. 2015;26(3):329337. PubMed ID: 25772829 doi:10.1111/sms.12436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Smart DJGill NDBeaven CMCook CJBlazevich AJ. The relationship between changes in interstitial creatine kinase and game-related impacts in rugby union. Br J Sports Med. 2008;42(3):198201. PubMed ID: 18048442 doi:10.1136/bjsm.2007.040162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jarvinen TAJarvinen TLKaariainen MKalimo HJarvinen M. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745764. PubMed ID: 15851777 doi:10.1177/0363546505274714

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Clarkson PMHubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil. 2002;81(11):5269. doi:10.1097/00002060-200211001-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Hyldahl RDHubal MJ. Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise. Muscle Nerve. 2014;49(2):155170. PubMed ID: 24030935 doi:10.1002/mus.24077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Warren GLIngalls CPLowe DAArmstrong RB. What mechanisms contribute to the strength loss that occurs during and in the recovery from skeletal muscle injury? J Orthop Sports Phys Ther. 2002;32(2):5864. PubMed ID: 11838581 doi:10.2519/jospt.2002.32.2.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chazaud B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunol Cell Biol. 2016;94(2):140145. PubMed ID: 26526620 doi:10.1038/icb.2015.97

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Howatson Gvan Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med. 2008;38(6):483503. PubMed ID: 18489195 doi:10.2165/00007256-200838060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Takarada Y. Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med. 2003;37(5):416419. PubMed ID: 14514532 doi:10.1136/bjsm.37.5.416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fletcher BDTwist CHaigh JDBrewer CMorton JPClose GL. Season-long increases in perceived muscle soreness in professional rugby league players: role of player position, match characteristics and playing surface. J Sports Sci. 2016;34(11):10671072. doi:10.1080/02640414.2015.1088166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    McLellan CPLovell DIGass GC. Biochemical and endocrine responses to impact and collision during elite rugby league match play. J Strength Cond Res. 2011;25(6):15531562. PubMed ID: 21602645 doi:10.1519/JSC.0b013e3181db9bdd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Shearer DAKilduff LPFinn Cet al. Measuring recovery in elite rugby players: the brief assessment of mood, endocrine changes, and power. Res Q Exerc Sport. 2015;86(4):379386. PubMed ID: 26288253 doi:10.1080/02701367.2015.1066927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jones MRWest DJHarrington BJet al. Match play performance characteristics that predict post-match creatine kinase responses in professional rugby union players. BMC Sports Sci Med Rehabil. 2014;6(1):38. PubMed ID: 25419462 doi:10.1186/2052-1847-6-38

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Merrick MA. Secondary injury after musculoskeletal trauma: a review and update. J Athl Train. 2002;37(2):209217. PubMed ID: 16558673

  • 17.

    Warren GLLowe DAArmstrong RB. Measurement tools used in the study of eccentric contraction-induced injury. Sports Med. 1999;27(1):4359. PubMed ID: 10028132 doi:10.2165/00007256-199927010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Smith CKruger MJSmith RMMyburgh KH. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Med. 2008;38(11):947969. PubMed ID: 18937524 doi:10.2165/00007256-200838110-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R345R353. doi:10.1152/ajpregu.00454.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Souza JDGottfried C. Muscle injury: review of experimental models. J Electromyogr Kinesiol. 2013;23(6):12531260. doi:10.1016/j.jelekin.2013.07.009

  • 21.

    Cheung KHume PAMaxwell L. Delayed onset muscle soreness: treatment strategies and performance factors. Sports Med. 2003;33(2):145164. PubMed ID: 12617692 doi:10.2165/00007256-200333020-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Proske UMorgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537(2):333345. doi:10.1111/j.1469-7793.2001.00333.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Allen DGWhitehead NPYeung EW. Mechanisms of stretch-induced muscle damage in normal and dystrophic muscle: role of ionic changes. J Physiol. 2005;567(3):723735. doi:10.1113/jphysiol.2005.091694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Elmer SMcDaniel JMattson JMartin J. Effect of a contusion injury on muscular force, power, work, and fatigue. Scand J Med Sci Sports. 2012;22(4):488494. PubMed ID: 21362054 doi:10.1111/j.1600-0838.2010.01276.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pointon MDuffield R. Cold water immersion recovery after simulated collision sport exercise. Med Sci Sports Exerc. 2012;44(2):206216. PubMed ID: 21716151 doi:10.1249/MSS.0b013e31822b0977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Singh TKGuelfi KJLanders GDawson BBishop D. A comparison of muscle damage, soreness and performance following a simulated contact and non-contact team sport activity circuit. J Med Sci Sport. 2011;14(5):441446. doi:10.1016/j.jsams.2011.03.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Leineweber MGao Y. Quantifying skeletal muscle recovery in a rat injury model using ultrasound imaging. J Biomech. 2015;48(2):379382. PubMed ID: 25529138 doi:10.1016/j.jbiomech.2014.11.050

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    McHugh MPConnolly DAJEston RGGleim GW. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect. Sports Med. 1999;27(3):157170. PubMed ID: 10222539 doi:10.2165/00007256-199927030-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Highman BAltland PD. Effects of exercise and training on serum enzyme and tissue changes in rats. Am J Physiol. 1963;205:162166. PubMed ID: 13954418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):8897. PubMed ID: 12641640 doi:10.1034/j.1600-0838.2003.02477.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hyldahl RDChen TCNosaka K. Mechanisms and mediators of the skeletal muscle repeated bout effect. Exerc Sport Sci Rev. 2017;45(1):2433. doi:10.1249/JES.0000000000000095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Kraemer WJSpiering BAVolek JSet al. Recovery from a National Collegiate Athletic Association Division I football game: muscle damage and hormonal status. J Strength Cond Res. 2009;23(1):210. PubMed ID: 19077734 doi:10.1519/JSC.0b013e31819306f2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hoffman JRMaresh CMNewton RUet al. Performance, biochemical, and endocrine changes during a competitive football game. Med Sci Sports Exerc. 2002;34(11):18451853. PubMed ID: 12439092 doi:10.1097/00005768-200211000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Hoffman JRKang JIERatamess NAFaigenbaum AD. Biochemical and hormonal responses during an Intercollegiate Football Season. Med Sci Sports Exerc. 2005;37(7):12371241. PubMed ID: 16015144 doi:10.1249/01.mss.0000170068.97498.26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bleakley CMBieuzen FDavison GWCostello JT. Whole-body cryotherapy: empirical evidence and theoretical perspectives. Open Access J Sports Med. 2014;5:2536. PubMed ID: 24648779 doi:10.2147/OAJSM.S41655

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Vaile JMGill NDBlazevich AJ. The effect of contrast water therapy on symptoms of delayed onset muscle soreness. J Strength Cond Res. 2007;21(3):697702. PubMed ID: 17685683

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Bieuzen FBleakley CMCostello JT. Contrast water therapy and exercise induced muscle damage: a systematic review and meta-analysis. PLoS ONE. 2013;8(4):e62356. PubMed ID: 23626806 doi:10.1371/journal.pone.0062356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Hill JHowatson Gvan Someren KLeeder JPedlar C. Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. Br J Sports Med. 2013;48(18):13401346. PubMed ID: 23757486 doi:10.1136/bjsports-2013-092456

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Sousa MTeixeira VHSoares J. Dietary strategies to recover from exercise-induced muscle damage. Int J Food Sci Nutr. 2014;65(2):151163. PubMed ID: 24180469 doi:10.3109/09637486.2013.849662

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bryer SCGoldfarb AH. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab. 2006;16(3):270280. PubMed ID: 16948483 doi:10.1123/ijsnem.16.3.270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Connolly DALauzon CAgnew JDunn MReed B. The effects of vitamin C supplementation on symptoms of delayed onset muscle soreness. J Sports Med Phys Fitness. 2006;46(3):462467. PubMed ID: 16998453

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kruger MJSmith C. Postcontusion polyphenol treatment alters inflammation and muscle regeneration. Med Sci Sports Exerc. 2012;44(5):872880. PubMed ID: 22033514 doi:10.1249/MSS.0b013e31823dbff3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Myburgh KHKruger MJSmith C. Accelerated skeletal muscle recovery after in vivo polyphenol administration. J Nutr Biochem. 2012;23(9):10721079. PubMed ID: 22079208 doi:10.1016/j.jnutbio.2011.05.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Machado AFFerreira PHMicheletti JKet al. Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med. 2016;46(4):503514. PubMed ID: 26581833 doi:10.1007/s40279-015-0431-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Marshall SWLoomis DPWaller AEet al. Evaluation of protective equipment for prevention of injuries in rugby union. Int J Epidemiol. 2005;34(1):113118. PubMed ID: 15561749 doi:10.1093/ije/dyh346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Mitchell B. Efficacy of thigh protectors in preventing thigh haematomas. J Sci Med Sport. 2000;3(1):3034. PubMed ID: 10839226 doi:10.1016/S1440-2440(00)80045-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Bleakley CMGlasgow PWebb MJ. Cooling an acute muscle injury: can basic scientific theory translate into the clinical setting? Br J Sports Med. 2012;46(4):296298. PubMed ID: 21677317 doi:10.1136/bjsm.2011.086116

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Leeder JGissane Cvan Someren KGregson WHowatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed ID: 21947816 doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Ihsan MWatson GAbbiss CR. What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med. 2016;46(8):10951109. PubMed ID: 26888646 doi:10.1007/s40279-016-0483-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Takagi RFujita NArakawa TKawada SIshii NMiki A. Influence of icing on muscle regeneration after crush injury to skeletal muscles in rats. J Appl Physiol. 2011;110(2):382388. doi:10.1152/japplphysiol.01187.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Puntel GOCarvalho NRAmaral GPet al. Therapeutic cold: an effective kind to modulate the oxidative damage resulting of a skeletal muscle contusion. Free Radic Res. 2011;45(2):133146. PubMed ID: 20942569 doi:10.3109/10715762.2010.517252

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Braakhuis AJHopkins WG. Impact of dietary antioxidants on sport performance: a review. Sports Med. 2015;45(7):939955. PubMed ID: 25790792 doi:10.1007/s40279-015-0323-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Paulsen GHamarsland HCumming KTet al. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol. 2014;592(24):53915408. PubMed ID: 25384788 doi:10.1113/jphysiol.2014.279950

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Connolly DAJMcHugh MPPadilla-Zakour OI. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679683. PubMed ID: 16790484 doi:10.1136/bjsm.2005.025429

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Howatson GMcHugh MPHill JAet al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843852. PubMed ID: 19883392 doi:10.1111/j.1600-0838.2009.01005.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    McLeay YBarnes MJMundel THurst SMHurst RDStannard SR. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9(1):19. PubMed ID: 22564864 doi:10.1186/1550-2783-9-19

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Archbold HARankin ATWebb Met al. RISUS study: Rugby injury surveillance in ulster schools. Br J Sports Med. 2017;51(7):600606. doi:10.1136/bjsports-2015-095491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Hrysomallis C. Injury incidence, risk factors and prevention in Australian rules football. Sports Med. 2013;43(5):339354. PubMed ID: 23529288 doi:10.1007/s40279-013-0034-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Marshall S. Rugby union: much potential for injury prevention but substantial resources are required now. Clin J Sport Med. 2013;23(4):324325. PubMed ID: 23799405 doi:10.1097/01.jsm.0000432185.95333.70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 350 350 152
Full Text Views 18 18 10
PDF Downloads 10 10 4
Altmetric Badge
PubMed
Google Scholar