Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

The aim of this study was to quantify peak age and improvements over the preceding years to peak age in elite athletic contestants according to athlete performance level, sex, and discipline. Individual season bests for world-ranked top 100 athletes from 2002 to 2016 (14,937 athletes and 57,049 individual results) were downloaded from the International Association of Athletics Federations’ website. Individual performance trends were generated by fitting a quadratic curve separately to each athlete’s performance and age data using a linear modeling procedure. Mean peak age was typically 25–27 y, but somewhat higher for marathon and male throwers (∼28–29 y). Women reached greater peak age than men in the hurdles and middle- and long-distance running events (mean difference, ±90% CL: 0.6, ±0.3 to 1.9, ±0.3 y: small to moderate). Male throwers had greater peak age than corresponding women (1.3, ±0.3 y: small). Throwers displayed the greatest performance improvements over the 5 y prior to peak age (mean [SD]: 7.0% [2.9%]), clearly ahead of jumpers, long-distance runners, hurdlers, middle-distance runners, and sprinters (3.4, ±0.2% to 5.2, ±0.2%; moderate to large). Similarly, top 10 athletes showed greater improvements than top 11–100 athletes in all events (1.0, ±0.9% to 1.8, ±1.1%; small) except throws. Women improved more than men in all events (0.4, ±0.2% to 2.9, ±0.4%) except sprints. This study provides novel insight on performance development in athletic contestants that are useful for practitioners when setting goals and evaluating strategies for achieving success.

Haugen is with Norwegian Olympic Federation, Oslo, Norway. Solberg is with Defense Inst, Norwegian School of Sport Sciences, Oslo, Norway. Foster is with Human Performance Laboratory, University of Wisconsin, La Crosse, WI. Morán-Navarro is with the Exercise Physiology Laboratory at Toledo, University of Castilla-La Mancha, Ciudad Real, Spain. Breitschädel is with the Dept of Civil and Environmental Engineering, Norwegian University of Science and Technology, Trondheim, Norway. Hopkins is with the Inst of Sport Exercise and Active Living, Victoria University, Melbourne, VIC, Australia.

Haugen (thomas.haugen@olympiatoppen.no) is corresponding author.
International Journal of Sports Physiology and Performance

Article Sections

References

  • 1.

    Dill DB. Marathoner DeMar: physiological studies. J Natl Cancer Inst. 1965;35:185191. PubMed ID: 5825455 doi:10.1093/jnci/35.1.185

  • 2.

    Moore DH 2nd. A study of age group track and field records to relate age and running speed. Nature. 1975;253:264265. PubMed ID: 1113841 doi:10.1038/253264a0

    • Search Google Scholar
    • Export Citation
  • 3.

    Malina RMStawinska TIgnasiak Zet al. Sex differences in growth and performance of track and field athletes 11–15 years. J Hum Kinet. 2010;24:7985.

    • Search Google Scholar
    • Export Citation
  • 4.

    Goswami BRoy ASDalui RBandyopadhyay A. Impact of pubertal growth on physical fitness. Am J Sports Sci Med. 2014;2:3439. doi:10.12691/ajssm-2-5A-8

    • Search Google Scholar
    • Export Citation
  • 5.

    Malina R. Top 10 research questions related to growth and maturation of relevance to physical activity, performance, and fitness. Res Q Exerc Sport. 2014;85:157173. doi:10.1080/02701367.2014.897592

    • Search Google Scholar
    • Export Citation
  • 6.

    Tønnessen ESvendsen IOlsen ICGuttormsen AHaugen T. Performance development in adolescent track and field athletes according to age, sex and sport discipline. PLoS ONE. 2015;10:0129014. doi:10.1371/journal.pone.0129014

    • Search Google Scholar
    • Export Citation
  • 7.

    Boccia GMoisè PFranceschi Aet al. Career performance trajectories in track and field jumping events from youth to senior success: the importance of learning and development. PLoS ONE. 2017;12:e0170744. PubMed ID: 28129370 doi:10.1371/journal.pone.0170744

    • Search Google Scholar
    • Export Citation
  • 8.

    Tanaka HSeals DR. Endurance exercise performance in masters athletes: age-associated changes and underlying physiological mech-anisms. J Physiol. 2008;586:5563. PubMed ID: 17717011 doi:10.1113/jphysiol.2007.141879

    • Search Google Scholar
    • Export Citation
  • 9.

    Korhonen MTMero AAAlén Met al. Biomechanical and skeletal muscle determinants of maximum running speed with aging. Med Sci Sports Exerc. 2009;41:844856. PubMed ID: 19276848 doi:10.1249/MSS.0b013e3181998366

    • Search Google Scholar
    • Export Citation
  • 10.

    Pantoja PDSaez DEVillarreal EBrisswalter JPeyré-Tartaruga LAMorin JB. Sprint acceleration mechanics in masters athletes. Med Sci Sports Exerc. 2016;48:24692476. PubMed ID: 27414690 doi:10.1249/MSS.0000000000001039

    • Search Google Scholar
    • Export Citation
  • 11.

    Gava PKern HCarraro U. Age-associated power decline from running, jumping, and throwing male masters world records. Exp Aging Res. 2015;41:115135. PubMed ID: 25724012 doi:10.1080/0361073X.2015.1001648

    • Search Google Scholar
    • Export Citation
  • 12.

    Berthelot GLen SHellard Pet al. Exponential growth combined with exponential decline explains lifetime performance evolution in individual and human species. Age. 2012;34:10011009. PubMed ID: 21695422 doi:10.1007/s11357-011-9274-9

    • Search Google Scholar
    • Export Citation
  • 13.

    Hollings SCHopkins WGHume PA. Age at peak performance of successful track and field athletes. Int J Sports Sci Coach. 2014;9:651661. doi:10.1260/1747-9541.9.4.651

    • Search Google Scholar
    • Export Citation
  • 14.

    Allen SVHopkins WG. Age of peak competitive performance of elite athletes: a systematic review. Sports Med. 2015;45:14311441. PubMed ID: 26088954 doi:10.1007/s40279-015-0354-3

    • Search Google Scholar
    • Export Citation
  • 15.

    Mero AKomi PVGregor RJ. Biomechanics of sprint running. A review. Sports Med. 1992;13:376392. PubMed ID: 1615256 doi:10.2165/00007256-199213060-00002

    • Search Google Scholar
    • Export Citation
  • 16.

    Cormie PMcGuigan MRNewton RU. Developing maximal neuromuscular power: part 1- biological basis of maximal power production. Sports Med. 2011;41:1738. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Search Google Scholar
    • Export Citation
  • 17.

    Haugen TPaulsen GSeiler SSandbakk Ø. New records in human power. Int J Sports Physiol Perform. 2018;13(6):678686. PubMed ID: 28872385 doi:10.1123/ijspp.2017-0441

    • Search Google Scholar
    • Export Citation
  • 18.

    Saltin BLarsen HTerrados Net al. Aerobic exercise capacity at sea level and at altitude in Kenyan boys, junior and senior runners compared with Scandinavian runners. Scand J Med Sci Sports. 1995;5:209221. PubMed ID: 7552766 doi:10.1111/j.1600-0838.1995.tb00037.x

    • Search Google Scholar
    • Export Citation
  • 19.

    Joyner MJCoyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:3544. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834.

    • Search Google Scholar
    • Export Citation
  • 20.

    Larsen HBSheel AW. The Kenyan runners. Scand J Med Sci Sports. 2015;25:110118. PubMed ID: 26589124 doi:10.1111/sms.12573

  • 21.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. Competitive performance of elite track-and-field athletes: variability and smallest worthwhile enhancements. Sportscience. 2005;9:1720.

    • Search Google Scholar
    • Export Citation
  • 23.

    Hunter SKStevens AAMagennis KSkelton KWFauth M. Is there a sex difference in the age of elite marathon runners? Med Sci Sports Exerc. 2011;43:656664. PubMed ID: 20881885 doi:10.1249/MSS.0b013e3181fb4e00

    • Search Google Scholar
    • Export Citation
  • 24.

    Hirsch KRSmith-Ryan AETrexler ETRoelofs EJ. Body composition and muscle characteristics of Division I track and field athletes. J Strength Cond Res. 2016;30:12311238. PubMed ID: 27100166 doi:10.1519/JSC.0000000000001203

    • Search Google Scholar
    • Export Citation
  • 25.

    Miller AEMacDougall JDTarnopolsky MASale DG. Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol. 1993;66:254262. PubMed ID: 8477683 doi:10.1007/BF00235103

    • Search Google Scholar
    • Export Citation
  • 26.

    Bishop PCureton KCollins M. Sex difference in muscular strength in equally-trained men and women. Ergonomics. 1987;30:675687. PubMed ID: 3608972 doi:10.1080/00140138708969760

    • Search Google Scholar
    • Export Citation
  • 27.

    Ford LEDetterline AJHo KKCao W. Gender- and height-related limits of muscle strength in world weightlifting champions. J Appl Physiol. 2000;89:10611064. PubMed ID: 10956351 doi:10.1152/jappl.2000.89.3.1061

    • Search Google Scholar
    • Export Citation
  • 28.

    Knechtle BValeri FZingg MARosemann TRüst CA. What is the age for the fastest ultra-marathon performance in time-limited races from 6 h to 10 days? Age. 2014;36:9715. PubMed ID: 25280550 doi:10.1007/s11357-014-9715-3

    • Search Google Scholar
    • Export Citation
  • 29.

    Morgan DWBransford DRCostill DLDaniels JTHowley ETKrahenbuhl GS. Variation in the aerobic demand of running among trained and untrained subjects. Med Sci Sports Exerc. 1995;27:404409. PubMed ID: 7752868 doi:10.1249/00005768-199503000-00017

    • Search Google Scholar
    • Export Citation
  • 30.

    Noble TJChapman RF. Elite African marathoners specialize earlier than elite non-African marathoners. Int J Sports Physiol Perform. 2017;10:119.

    • Search Google Scholar
    • Export Citation
  • 31.

    Scott RAGeorgiades EWilson RHGoodwin WHWolde BPitsiladis YP. Demographic characteristics of elite Ethiopian endurance runners. Med Sci Sports Exerc. 2003;35:17271732. PubMed ID: 14523311 doi:10.1249/01.MSS.0000089335.85254.89

    • Search Google Scholar
    • Export Citation
  • 32.

    Onywera VOScott RABoit MKPitsiladis YP. Demographic characteristics of elite Kenyan endurance runners. J Sports Sci. 2006;24:415422. PubMed ID: 16492605 doi:10.1080/02640410500189033

    • Search Google Scholar
    • Export Citation
  • 33.

    Haugen TTønnessen ESeiler S. 9.58 and 10.49: nearing the citius end for 100 m? Int J Sports Physiol Perform. 2015;10:269272. PubMed ID: 25229725 doi:10.1123/ijspp.2014-0350

    • Search Google Scholar
    • Export Citation
  • 34.

    Malina RMBouchard CBeunen G. Human growth: selected aspects of current research on well-nourished children. Ann Rev Anthrop. 1988;17:187219. doi:10.1146/annurev.an.17.100188.001155

    • Search Google Scholar
    • Export Citation
  • 35.

    Bitar AVernet JCoudert JVermorel M. Longitudinal changes in body composition, physical capacities and energy expenditure in boys and girls during the onset of puberty. Eur J Nutr. 2000;39:157163. PubMed ID: 11079735 doi:10.1007/s003940070019

    • Search Google Scholar
    • Export Citation
  • 36.

    Siervogel RMDemerath EWSchubert Cet al. Puberty and body composition. Horm Res. 2003;60:3645. PubMed ID: 12955016

  • 37.

    Seiler SBeneke RHalson SLet al. Is doping-free sport a Utopia? Int J Sports Physiol Perform. 2013;8:13. PubMed ID: 23383411 doi:10.1123/ijspp.8.1.1

    • Search Google Scholar
    • Export Citation
  • 38.

    Seiler SDe Koning JJFoster C. The fall and rise of the gender difference in elite anaerobic performance 1952–2006. Med Sci Sports Exerc. 2007;39:534540. PubMed ID: 17473780 doi:10.1249/01.mss.0000247005.17342.2b

    • Search Google Scholar
    • Export Citation

Article Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 14
Full Text Views 0 0 0
PDF Downloads 0 0 0

Altmetric Badge

PubMed

Google Scholar